scholarly journals Grafted natural polymer as new drag reducing agent: An experimental approach

2012 ◽  
Vol 18 (3) ◽  
pp. 361-371 ◽  
Author(s):  
Hayder Abdulbari ◽  
Nuraffini Kamarulizam ◽  
A.H. Nour

The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus) mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil) media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID), four testing sections in each pipe (0.5 to 2.0 m), tank, pump and pressure transmitters. Reynolds number (Re), additive concentration and the transported media type (water and gas-oil), were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr) up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

2018 ◽  
Vol 8 (01) ◽  
Author(s):  
Adil Abbas Alwan ◽  
Ali Jassim Mohammad

flow, where adding certain amount of drag reducing agent, such as polymer. From addition of that agent, it causes a dramatic frictional drag reduction. This work shows the effect of the pressure drop on a drag reduction along pipe in a horizontal placing with kerosene flow is investigated. The tested fluid was kerosene and poly isobutylene polymer (PIB) with 50 ppm (part per million), 75 ppm, and 100 ppm weight concentration of polymer: Experimental investigation gives more description of this phenomenon. The experimental results illustrate that pressure drop and pressure gradient decreases with increasing of polymer concentration and volume flow rate. The friction factor decreases with increasing of additive concentration and velocity. The drag reduction percentage increases with increasing the mean velocity, polymer concentration and temperature. The experimental results show that maximum drag reduction (DR %) about 19%.


Author(s):  
Hussam Hussein Ali ◽  
Majid Habeeb Faidh-Allah

flow, where adding certain amount of drag reducing agent, such as polymer. From addition of that agent, it causes a dramatic frictional drag reduction. This work shows the effect of the pressure drop on a drag reduction along pipe in a horizontal placing with kerosene flow is investigated. The tested fluid was kerosene and poly isobutylene polymer (PIB) with 50 ppm (part per million), 75 ppm, and 100 ppm weight concentration of polymer: Experimental investigation gives more description of this phenomenon. The experimental results illustrate that pressure drop and pressure gradient decreases with increasing of polymer concentration and volume flow rate. The friction factor decreases with increasing of additive concentration and velocity. The drag reduction percentage increases with increasing the mean velocity, polymer concentration and temperature. The experimental results show that maximum drag reduction (DR %) about 19%.


2017 ◽  
Vol 898 ◽  
pp. 2076-2080 ◽  
Author(s):  
Xing Qi Huang ◽  
Xiao Rong Li ◽  
Da Wei Zhang ◽  
Chang Jun Xue ◽  
Ai Qin Zhang

Compared with the traditional water reducer, polycarboxylicwater-reducing agent exhibits the advantages of high water-reducing rate, cement paste fluidity and low slump loss, etc. The structure of polycarboxylates water reducing agent molecular is comb type. Water reducing agent can be used in the molecular design because it has high water reducing rate, low dosage, good slump stability, and have great potential in increase strength. In recent years, it has attracted many researchers' attention. Water reducing agent can block or destroy cement granular flocculation structure, through the surface function, complexation, electrostatic repulsion force and stereo repulsive force. Research on water reducing agent based on the application of poly carboxylic acid can realize functional design of water reducing agent, so as to promote the development of high-performance concrete.


2012 ◽  
Vol 531 ◽  
pp. 395-398
Author(s):  
Xiao Fei Sun ◽  
Yu Hui Qiao

Ginkgo seeds were selected and used as experimental material to study protein compositions in ginkgo protein. Ginkgo protein was used as accessory to be added into flour to make bread. Effect of ginkgo protein on moisture content and hardness of bread were investigated. Experimental results showed that ginkgo protein contained water-soluble protein and salt-soluble protein which was 85.28 percents in total protein and contained small amounts of prolamin and alkali-soluble protein. The bread added with different ratios of ginkgo protein had higher moisture content and lower hardness. Therefore, adding appropriate amount of ginkgo protein could improve bread baking performances and bread shelf life.


2011 ◽  
Vol 291-294 ◽  
pp. 1925-1928
Author(s):  
De Xin Zhang ◽  
Xue Bo Shao ◽  
Li Lou ◽  
Lei Liu

The steady bubble shape as one of the basic research, plays a decisive role in the cavitation’s study, To study it clearly will be not only basis for the study of non-steady cavitation, but also provide the necessary basis for the design of the control for cavitation bubble. In this paper, cavity shape produced by submerged body is studied, and related to the use of foreign experimental results, super-cavitation resistance, drag reduction is discussed.


Sign in / Sign up

Export Citation Format

Share Document