scholarly journals A case study on availability of sensor data in agent cooperation

2010 ◽  
Vol 7 (3) ◽  
pp. 597-615
Author(s):  
Christian Johansson ◽  
Fredrik Wernstedt ◽  
Paul Davidsson

Multi-agent cooperation can in several cases be used in order to mitigate problems relating to task sharing within physical processes. In this paper we apply agent based solutions to a class of problems defined by their property of being predictable from a macroscopic perspective while being highly stochastic when viewed at a microscopic level. These characteristic properties can be found in several industrial processes and applications, e.g. within the energy market where the production and distribution of electricity follow this pattern. Another defining problem characteristic is that the supply is usually limited as well as consisting of several layers of differentiating production costs. We evaluate and compare the performance of the agent system in three different scenarios, and for each such scenario it is shown to what degree the optimization system is dependent on the level of availability of sensor data.

2020 ◽  
pp. 369-389
Author(s):  
Sara Montagna ◽  
Andrea Omicini

This chapter aims at discussing the content of multi-agent based simulation (MABS) applied to computational biology i.e., to modelling and simulating biological systems by means of computational models, methodologies, and frameworks. In particular, the adoption of agent-based modelling (ABM) in the field of multicellular systems biology is explored, focussing on the challenging scenarios of developmental biology. After motivating why agent-based abstractions are critical in representing multicellular systems behaviour, MABS is discussed as the source of the most natural and appropriate mechanism for analysing the self-organising behaviour of systems of cells. As a case study, an application of MABS to the development of Drosophila Melanogaster is finally presented, which exploits the ALCHEMIST platform for agent-based simulation.


2008 ◽  
pp. 2598-2617
Author(s):  
Jianxin Jiao ◽  
Xiao You ◽  
Arun Kumar

This chapter applies the multi-agent system paradigm to collaborative negotiation in a global manufacturing supply chain network. Multi-agent computational environments are suitable for dealing with a broad class of coordination and negotiation issues involving multiple autonomous or semi-autonomous problem-solving agents. An agent-based multi-contract negotiation system is proposed for global manufacturingsupply chain coordination. Also reported is a case study of mobile phone global manufacturing supply chain management.


Author(s):  
Dongming Fan ◽  
Yi Ren ◽  
Qiang Feng

The smart grid is a new paradigm that enables highly efficient energy production, transport, and consumption along the whole chain from the source to the user. The smart grid is the combination of classical power grid with emerging communication and information technologies. IoT-based smart grid will be one of the largest instantiations of the IoT in the future. The effectiveness of IoT-based smart grid is mainly reflected in observability, real-time analysis, decision-making, and self-healing. A proper effectiveness modeling approach should maintain the reliability and maintainability of IoT-based smart grids. In this chapter, a multi-agent-based approach is proposed to model the architecture of IoT-based smart grids. Based on the agent framework, certain common types of agents are provided to describe the operation and restoration process of smart grids. A case study is demonstrated to model an IoT-based smart grid with restoration, and the interactive process with agents is proposed simultaneously.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2815
Author(s):  
Xiaohui Zhang ◽  
Shufeng Tang ◽  
Xinhua Liu ◽  
Reza Malekian ◽  
Zhixiong Li

This paper proposes a multi-agent-based collaborative virtual manufacturing environment (VME) to save energy consumption and improve efficiency in the manufacturing process. In order to achieve the high autonomy of the manufacturing system, a multi-agent system (MAS) is designed to build a collaborative VME. In this new VME environment, edge computing is embedded to strengthen the cyber resource utilization and system economy. Moreover, an efficient communication channel between networks is proposed. The subsequent cooperation and collaboration protocols among agents are designed to ensure flexible and process-oriented operations. Furthermore, the fuzzy resolution algorithm is employed to resolve the competition conflicts among function-similar MASs in the distributed manufacturing scenario. Lastly, a simulation and case study are performed to evaluate the performance of the proposed VME in Internet of Things (IoT)-based manufacturing. The analysis results have demonstrated the feasibility and effectiveness of the proposed VME system.


2011 ◽  
pp. 3321-3338
Author(s):  
Vasco Furtado ◽  
Eurico Vasconcelos

In this work we will describe EGA (educational geosimulation architecture), an architecture for the development of pedagogical tools for training in urban activities based on MABS (multi-agent based simulation), GIS (geographic information systems), and ITS (intelligent tutoring systems). EGA came as a proposal for the lack of appropriate tools for the training of urban activities with high risk and/or high cost. As a case study, EGA was used for the development of a training tool for the area of public safety, the ExpertCop system. ExpertCop is a geosimulator of criminal dynamics in urban environments that aims to train police officers in the activity of preventive policing allocation. ExpertCop intends to induce students to reflect about their actions regarding resources allocation and to understand the relationship between preventive policing and crime.


Author(s):  
Jianxin Jiao ◽  
Xiao You ◽  
Arun Kumar

This chapter applies the multi-agent system paradigm to collaborative negotiation in a global manufacturing supply chain network. Multi-agent computational environments are suitable for dealing with a broad class of coordination and negotiation issues involving multiple autonomous or semi-autonomous problem-solving agents. An agent-based multi-contract negotiation system is proposed for global manufacturingsupply chain coordination. Also reported is a case study of mobile phone global manufacturing supply chain management.


2011 ◽  
pp. 236-276 ◽  
Author(s):  
Juan Pavon ◽  
Jorge J. Gomez-Sanz ◽  
Rubén Fuentes

INGENIAS provides a notation for modeling multi-agent systems (MAS) and a well-defined collection of activities to guide the development process of an MAS in the tasks of analysis, design, verification, and code generation, supported by an integrated set of tools—the INGENIAS Development Kit (IDK). These tools, as well as the INGENIAS notation, are based on five meta-models that define the different views and concepts from which a multi-agent system can be described. Using meta-models has the advantage of flexibility for evolving the methodology and adopting changes to the notation. In fact, one of the purposes in the conception of this methodology is to integrate progressive advances in agent technology, towards a standard for agent-based systems modeling that could facilitate the adoption of the agent approach by the software industry. The chapter presents a summary of the INGENIAS notation, development process, and support tools. The use of INGENIAS is demonstrated in an e-business case study. This case study includes concerns about the development process, modeling with agent concepts, and implementation with automated code generation facilities.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-24 ◽  
Author(s):  
Marc Deissenroth ◽  
Martin Klein ◽  
Kristina Nienhaus ◽  
Matthias Reeg

The ongoing deployment of renewable energy sources (RES) calls for an enhanced integration of RES into energy markets, accompanied by a new set of regulations. In Germany, for instance, the feed-in tariff legislation for renewables has been successively replaced by first optional and then obligatory marketing of RES on competitive wholesale markets. This paper introduces an agent-based model that allows studying the impact of changing energy policy instruments on the economic performance of RES operators and marketers. The model structure, its components, and linkages are presented in detail; an additional case study demonstrates the capability of our sociotechnical model. We find that changes in the political framework cannot be mapped directly to RES operators as behaviour of intermediary market actors has to be considered as well. Characteristics and strategies of intermediaries are thus an important factor for successful RES marketing and further deployment. It is shown that the model is able to assess the emergence and stability of market niches.


Sign in / Sign up

Export Citation Format

Share Document