scholarly journals Calibration of ac induction magnetometer

2018 ◽  
Vol 31 (4) ◽  
pp. 613-626 ◽  
Author(s):  
Branko Koprivica ◽  
Marko Sucurovic ◽  
Alenka Milovanovic

The aim of this paper is to describe a procedure and experimental setup for calibration of AC induction magnetometer. The paper presents an overview of the previous research and results of measurement of magnetic flux density inside large diameter multilayer solenoid. This solenoid is magnetising coil of the magnetometer. The paper also describes a system of five smaller coils of the magnetometer which are placed inside the large solenoid. Three small coils are pickup coils, accompanied with two compensation coils, of which one is an empty coil for magnetic field measurement. The experimental results of calibration of this coil system have been presented. A proper discussion of all the results presented has been also given in the paper.

2014 ◽  
Vol 565 ◽  
pp. 133-137
Author(s):  
Athirot Mano ◽  
Wisut Titiroongruang

In a measurement of magnetic flux density with high accuracy by using Hall effect sensor must be considered position of Hall sensor, that perfect perpendicular with magnetic flux line for measurement. Only one Hall element can cause measuring error. Therefore, this paper presents an application of independent directional magnetic field measurement technique on two dimensions for high accuracy magnetometer. It is presented by using two Hall sensors locate perpendicular to each other and use the relation of the two voltage output signal from both Hall sensors to calculate constant Hall voltage and Magnetic flux density with high accuracy by using trigonometric function with Lab-View programming. And as the result of experiment, this technique can reduce the limitation in term of this angle in the range magnetic flux density can be measured 0-1800 gauss. A calibration curve of this system compare with standard Gauss meter shows the coefficient of determination (R2) equal to 1 and has the accuracy percentage as less than 0.5%.


2013 ◽  
Vol 811 ◽  
pp. 347-352 ◽  
Author(s):  
Athirot Mano ◽  
Narin Atiwongsangthong ◽  
Wisut Titiroongruang

The independent directional magnetic field measurement is a new technique for magnetic flux density measurement with high accuracy. This technique can reduce the limitation in term of angle that magnetic flux lines interact with Hall sensors. However, the original system limits the uniformity and symmetry of magnetic field patterns, which can cause an error for measurement system. Therefore, the aim of this research is to present the method to increase measurement accuracy of system, by improve magnetic field uniformity which can be done by using electromagnet instead of permanent magnet. The system is also improved the mechanical circle motion by using stepping motor, it is used to rotate Hall sensors in magnetic field which is generated by electromagnet. The result from experiment has shown of this method that can reduce the error percentage as 5% compare with original system. This method is shown 0.99997 of coefficient of determination, which represents to accuracy in magnetic flux density measurement range 0-1350 Gauss.


2009 ◽  
Vol 22 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Dejana Herceg ◽  
Anamarija Juhas ◽  
Miodrag Milutinov

In this paper, a square coil system similar to the Merritt four coil system is investigated. This system is used for a biomagnetic experiment at the laboratory at the Department of Biology, Faculty of Sciences, University of Novi Sad. For the experiment, it is necessary that the magnetic field inside the coils be uniform. Therefore, distribution of the magnetic flux density inside the coil system is considered. For this system, magnetic flux density produced by sinusoidal current through the coils is calculated and then uniformity of the magnetic field inside the coils is investigated. Calculated magnetic flux density is compared to the measured magnetic flux density obtained experimentally at the laboratory. .


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2010 ◽  
Vol 129-131 ◽  
pp. 692-696
Author(s):  
Jian Bing Meng ◽  
Xiao Juan Dong ◽  
Chang Ning Ma

A mathematical model was developed to describe the oscillating amplitude of the plasma arc injected transverse to an external transverse alternating magnetic field. The characteristic of plasma arc under the external transverse alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation of plasma arc were also analyzed. The results show that it is feasible to adjust the shape of the plasma arc by the transverse alternating magnetic field, which expands the region of plasma arc thermal treatment upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flow rate, more arc current, and less standoff cause the oscillating amplitude to decrease. The researches have provided a deeper understanding of adjusting of plasma arc characteristics.


2019 ◽  
Vol 9 (3) ◽  
pp. 22
Author(s):  
António Roque ◽  
Duarte M. Sousa ◽  
Pedro Sebastião ◽  
Elmano Margato ◽  
Gil Marques

This paper describes an innovative solution for the power supply of a fast field cycling (FFC) nuclear magnetic resonance (NMR) spectrometer considering its low power consumption, portability and low cost. In FFC cores, the magnetic flux density must be controlled in order to perform magnetic flux density cycles with short transients, while maintaining the magnetic flux density levels with high accuracy and homogeneity. Typical solutions in the FFC NMR literature use current control to get the required magnetic flux density cycles, which correspond to an indirect magnetic flux density control. The main feature of this new relaxometer is the direct control of the magnetic flux density instead of the magnet current, in contrast with other equipment available in the market. This feature is a great progress because it improves the performance. With this solution it is possible to compensate magnetic field disturbances and parasitic magnetic fields guaranteeing, among other possibilities, a field control below the earth magnetic field. Experimental results validating the developed solution and illustrating the real operation of this type of equipment are shown.


Author(s):  
Seok Woo Lee ◽  
Seung S. Lee

In this paper, PDMS membrane for a large displacement is fabricated by new fabrication process which can be integrated with electrical components on substrates fabricated by conventional microfabrication processes and the performance of the membrane using electromagnetism was evaluated. Rectangular PDMS membranes are designed as 2mm and 3mm in width, respectively and are actuated by Lorentz force induced by current paths spread on the membrane. The PDMS membrane is fabricated by reducing a viscosity of uncured PDMS with dilution and spin coating on the substrate on which electric components generating Lorentz force. Finally, PDMS membrane including electric components is opened by a bulk micromachining. The device is tested in magnetic field induced by Nd-Fe-B magnet whose magnetic flux density is 90G. When applied currents are 20, 25, and 30mA, the maximum deflections of membranes are 1.21, 3.07, and 20.2μm for 1.5mm width membrane and 3.34, 31.0, and 50.9μm for width 3mm membrane, respectively. The large displacement PDMS membrane actuator has potentially various applications such as fluidics, optics, acoustics, and electronics. Currently, we are planning to measure the optical performance of the actuator as a focal tunable liquid lens.


Author(s):  
Ping-Hsun Lee ◽  
Jen-Yuan (James) Chang

Abstract In this paper we proposed a platform for measuring shear force of magnetorheological (MR) fluid by which the relationship of yield stress and magnetic flux density of specific material can be determined. The device consisted of a rotatable center tube in a frame body and the magnetic field was provided by two blocks of permanent magnets placed oppositely outside the frame body. The magnitude and direction of the magnetic field were manipulated by changing the distance of the two permanent magnets from the frame body and rotating the center tube, respectively. For determining the magnetic field of the device, we adopted an effective method by fitting the FEM (finite element method) result to the measured one and then rebuilt the absent components to approximate the magnetic field, which was hardly to be measured simultaneously as different device setup were required. With the proposed platform and analytical methods, the drawing shear force and the corresponding yield stress contributed by MR fluid could be evaluated in respect to the magnitude and direction of given magnetic flux density with acceptable accuracy for specific designing purposes without a large, complex, and expensive instrument.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2435
Author(s):  
Yanliang Qiao ◽  
Jiangtao Zhang ◽  
Mei Zhang ◽  
Lisheng Liu ◽  
Pengcheng Zhai

A new magneto-hyperelastic model was developed to describe the quasi-static compression behavior of silicone rubber-based isotropic magnetorheological elastomer (MRE) in this work. The magnetization property of MRE was characterized by a vibrating sample magnetometer (VSM), and the quasi-static compression property under different magnetic fields was tested by using a universal testing machine equipped with a magnetic field accessory. Experimental results suggested that the stiffness of the isotropic MRE increased with the magnetic flux density within the tested range. Based on experimental results, a new magneto-hyperelastic model was established by coupling the Ogden hyperelastic model, the magnetization model and the magneto-induced modulus model based on a magnetic dipole theory. The results show that the proposed new model can accurately predict the quasi-static compression property of the isotropic MRE under the tested magnetic flux density and strain ranges using only three model parameters.


Sign in / Sign up

Export Citation Format

Share Document