scholarly journals Dry matter accumulation and remobilization in winter barley as affected by genotype and sowing date

Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 751-763 ◽  
Author(s):  
Milan Mirosavljevic ◽  
Novo Przulj ◽  
Vojislava Momcilovic ◽  
Nikola Hristov ◽  
Ivana Maksimovic

Knowledge about the effect of genotypic variation and sowing date on dry matter accumulation, remobilization and partitioning in winter barley is important for crop management. Therefore, in field studies, six winter barley genotypes of various origin and maturity groups were studied across four sowing dates. In general, grain yield and dry matter content decreased with delayed sowing, after mid-October, and average grain yield in late October and November sowing was lower 14.2% and 16.9%, respectively, compared to the yield in the optimal sowing date. Among the tested genotypes, high grain yield and dry matter content was obtained from late and medium early barley genotypes. Delayed sowing dates, on average, reduced dry matter remobilization and contribution of vegetative dry matter to grain yield. In years characterized by high spring precipitation, late September and early October sowing of medium early and late barley genotypes enable increased accumulation and remobilization of dry matter and obtainment of high grain yield.

2018 ◽  
pp. 35-41 ◽  
Author(s):  
Karina Bianka Bodnár ◽  
Seyed Mohammad Nasir Mousavi ◽  
János Nagy

The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017. The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed. The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period. The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model. Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.


2019 ◽  
pp. 115-119
Author(s):  
Tímea Rubóczki ◽  
Mária Takácsné Hájos

An increasing interest has been observed of beetroot leaf as a salad component due to recent studies focusing on their nutritional value. The randomized field experiment was carried out on lowland chernozem soil with 6 varieties, 3 replications and 2 sowing dates. Sampling was performed on 23 of August 2018 at the stage of 30 and 50 days of vegetation, where leaf (30 and 50 days) and root (50 days) were collected. Total dry matter, folic acid and nitrate content were evaluated. The results of this investigation show that higher total dry matter content was measured in the root (8.47–10.30%) compared to the leaf in both developmental stages (6.47–9.20%). Nevertheless, higher folic acid content was found in the young leaves of 30 and 50 days of development (58.77–113.86 µg 100g-1). Among the examined varieties, Bonel has presented great amount of folic acid not only in the leaves (99.35–113.61 µg 100g-1), but also in the root (89.99 µg 100g-1). Finally, lower nitrate content was found in Libero (316.16 mg kg-1) at 30 days and in Akela (340.41 mg kg-1) at 50 days of development. Thereby, fresh consumption of beetroot leaves are highly recommended.


Author(s):  
Getu Beyene ◽  
Raj Deepika Chauhan ◽  
Jackson Gehan ◽  
Dimuth Siritunga ◽  
Nigel Taylor

Abstract Key message Among the five cassava isoforms (MeAPL1–MeAPL5), MeAPL3 is responsible for determining storage root starch content. Degree of storage root postharvest physiological deterioration (PPD) is directly correlated with starch content. Abstract AGPase is heterotetramer composed of two small and two large subunits each coded by small gene families in higher plants. Studies in cassava (Manihot esculenta) identified and characterized five isoforms of Manihot esculenta ADP-glucose pyrophosphorylase large subunit (MeAPL1–MeAPL5) and employed virus induced gene silencing (VIGS) to show that MeAPL3 is the key isoform responsible for starch and dry matter accumulation in cassava storage roots. Silencing of MeAPL3 in cassava through stable transgenic lines resulted in plants displaying significant reduction in storage root starch and dry matter content (DMC) and induced a distinct phenotype associated with increased petiole/stem angle, resulting in a droopy leaf phenotype. Plants with reduced starch and DMC also displayed significantly reduced or no postharvest physiological deterioration (PPD) compared to controls and lines with high DMC and starch content. This provides strong evidence for direct relationships between starch/dry matter content and its role in PPD and canopy architecture traits in cassava.


1992 ◽  
Vol 118 (3) ◽  
pp. 279-287 ◽  
Author(s):  
M. J. Conry ◽  
A. Hegarty

SUMMARYAn experiment, carried out over a 5-year period (1984–88) on medium–heavy textured soil at Athy (Ireland), tested the effect of five sowing dates (early September–early December) and four seed rates (c. 100, 150, 200 and 250 kg/ha) on the grain yield and protein content of winter barley (cv. Panda).September-sown plots gave the greatest yields in all years. Plots sown in mid-October and later gave significantly reduced yields. Yield reductions over the 5-year period averaged 15, 24 and 34% for the mid-October, November and December sowing dates, respectively. Significant differences in yield between the smaller and larger seed rates were obtained, with the latter giving the greatest yields at all sowing dates from late September to December. Increasing the seed rate, however, did not compensate for the yield reduction due to delayed sowing. In the early September-sown plots, the higher seed rates gave reduced yields in four of the five years (1984–87) with the opposite result in 1988. In 1988 the early September-sown plots gave greater yields than the late September-sown plots.Regression analysis showed a strong relationship between yield and log(ears/m2) in four of the five years (1984–87) but the relationship was poor in 1988 primarily due to the inexplicably low ear population of the early-sown plots. The inclusion of 1000-grain weight in the model gave a better fit and accounted for a high proportion (62–80%) of the yield variation.The late September sowing date and the higher seed rates gave slightly lower protein levels in four of the five years. There was an inverse relationship between grain yield and protein for the same four years (1984–87).


1983 ◽  
Vol 63 (3) ◽  
pp. 601-609 ◽  
Author(s):  
M. R. VATTIKONDA ◽  
R. B. HUNTER

A 2-yr study was conducted at Elora and Brucefield, Ont. to examine the relationship between grain yield following grain physiological maturity and whole-plant dry matter (DM) yield and quality determined at the stage desirable for ensiling. Quality parameters analyzed include in vitro dry matter digestibility (IVD) of the stover, IVD of the whole plant, stover lignin content and stover protein content. There was a significant linear relationship between the performance of hybrids for grain yield production and their yield for silage production. However, the relationship was not complete enough to permit reliable selection of hybrids for silage production based on grain yield performance (coefficients of determination were 0.23 and 0.25 for Elora and Brucefield, respectively). Grain dry matter content, however, provided a satisfactory estimate of whole-plant maturity for silage production. Coefficients of determination between grain DM content and whole-plant DM content were 0.71 and 0.53 for Elora and Brucefield, respectively. There was considerable variation among hybrids for lignin content and IVD of stover. Differences were much less for whole-plant IVD. The findings of this study support the need for separate evaluation trials for corn grown for whole-plant silage production as opposed to grain production.Key words: Zea mays, corn silage, grain yield, hybrid performance


1969 ◽  
Vol 78 (3-4) ◽  
pp. 87-98
Author(s):  
Ricardo Goenaga

There is tittle information regarding optimum water requirement for tanier grown under semiarid conditions with irrigation. A study was conducted to determine the growth, nutrient uptake and yield performance of tanier plants irrigated with the equivalent of fractions of evapotranspiration. The irrigation regimes were based on class A pan factors ranging from 0.33 to 1.32 with increments of 0.33. Tanier plants grown under field conditions were harvested for biomass production about every 6 weeks during the growing season. At each harvest, plants were separated into various plant parts to determine dry matter accumulation, N, P, K, Ca, Mg, and Zn uptake and yield. During the first 278 days after planting, plants replenished with 99 and 132% of the water lost through evapotranspiration (WLET) exhibited similar total dry matter content; however, their dry matter content was significantly greater than that in plants supplied with 33 and 66% WLET. The amount of N, P, K, Ca, Mg, and Zn taken up by plants replenished with 99 and 132 WLET was similar, whereas the content of these nutrients in plants replenished with 33 and 66% WLET was considerably lower. The yield of plants replenished with 99% WLET was considerably greater than that of plants supplied with 33 and 66% WLET, but significantly lower than that from plants receiving 132% WLET. Maximum cormel yields of 19,479 kg/ha were obtained from plants replenished with 132% WLET.


1987 ◽  
Vol 108 (2) ◽  
pp. 459-468 ◽  
Author(s):  
T. Nilsson

SummaryThe effects of the time of sowing on growth and chemical composition of carrots grown from May to November were studied during 3 years.Delaying sowing for 1 or 2 months after the beginning of May resulted in a reduction in the growth of both roots and foliage and gave roots with lower dry-matter content and glucose/fructose ratio but higher amounts of hexoses, total nitrogen and amino nitrogen in root dry matter. Sowing date had no influence on the concentration of sucrose, phosphorus, potassium, calcium and magnesium in root dry matter up to 137 days from sowing. Carotene decreased only after the last sowing. Sucrose concentration of the roots increased throughout the periods studied irrespective of the time of sowing. The longer the growing period the higher was the sucrose concentration. The concentration of hexoses decreased from the first harvest at 70 days to reach a constant level at about 130 days from sowing.The results did not indicate the presence of a well-defined stage of biochemical maturity in the autumn when carrot roots are expected as most suitable for harvest and subsequent long-term storage.


1988 ◽  
Vol 36 (6) ◽  
pp. 711 ◽  
Author(s):  
KA Meney ◽  
KW Dixon

Four species of Restionaceae and Cyperaceae from the Mediterranean-type climate region of Western Australia were studied to determine factor(s) limiting their reproductive performance. Ecdeiocolea monostachya (Ecdeiocoleaceae), Lepidobolus chaetocephalus (Restionaceae), Restio aff. sphacelatus (Restionaceae) and Mesomelaena pseudostygia (Cyperaceae) differed in the pattern of dry matter partitioning and phenological patterns. All species were moderately efficient at remobilising dry matter from senescing vegetative organs, maintaining constant tissue water to dry matter content in mature organs over the study period regardless of soil moisture availability. In situ nutrient and water supplements of study species did not elicit improved seed production or significant increases in dry matter accumulation (except for current and old culms of E. monostachya and spikelets of L. chaetocephalus). For all study species except L. chaetocephalus, seed production was low, while herbivore activity, insect predation andlor infection by a smut (Tolyposporium lepidiboli) reduced seed production potential in L. chaetocephalus and E. monostachya. Attempts at seed germination for all study species were not successful. Extracted embryos from mature seed of all species cultured in vitro grew rapidly, providing a reliable method for propagation of study species.


Sign in / Sign up

Export Citation Format

Share Document