scholarly journals Genetic diversity of common bean (Phaseolus vulgaris L.) breeding collection in Serbia

Genetika ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Aleksandra Savic ◽  
Milka Brdar-Jokanovic ◽  
Miodrag Dimitrijevic ◽  
Sofija Petrovic ◽  
Milan Zdravkovic ◽  
...  

The characterization of 41 common bean cultivars and landraces from breeding collection of Institute of Field and Vegetable Crops, Novi Sad, Serbia, was done based on phenotypic traits and microsatellite markers. Phenotypic traits were chosen from Bioversity International descriptor list. In addition, main yield components were investigated. Analysis of phaseolin type revealed affiliation of cultivars and landraces to Mesoamerican or Andean gene pool. Cultivars and landraces demonstrated significant diversity level with regard to studied phenotypic traits. Identified variation showed high potential for developing new cultivars with desirable combination of traits. Principal component analysis based on phenotypic traits separated bean cultivars and landraces in two groups, which corresponded to Mesoamerican and Andean determined according to phaseolin type. Putative hybrids, with combination of traits between gene pools were also identified. Analysis of microsatellite data, using twenty-two SSR primer pairs, showed medium gene diversity in studied material. Microsatellite-based cluster analysis separated genotypes in two discrete clusters and several subclusters. No clear separation according to gene pool was found between the clusters, however grouping according to gene pool and patterns of phenotypic variation, following these gene pools, were observed within subclusters. Knowledge on detailed relationships of cultivars and landraces based on phenotypic and molecular data would facilitate identification of candidates for future breeding.

2015 ◽  
Vol 140 (4) ◽  
pp. 308-316 ◽  
Author(s):  
Marko Maras ◽  
Barbara Pipan ◽  
Jelka Šuštar-Vozlič ◽  
Vida Todorović ◽  
Gordana Đurić ◽  
...  

In this study, genetic diversity of 119 accessions of common bean (Phaseolus vulgaris) from five former Yugoslav republics constituting the western Balkans was assessed by 13 microsatellite markers. This set of markers has proven before to efficiently distinguish between bean genotypes and assign them to either the Andean or the Mesoamerican gene pool of origin. In this study, 118 alleles were detected or 9.1 per locus on average. Four groups (i.e., Slovene, Croatian, Bosnian, and Serbian) showed similarly high levels of genetic diversity as estimated by the number of different alleles, number of effective alleles, Shannon’s information index, and expected heterozygosity. Mildly narrower genetic diversity was identified within a group of Macedonian accessions; however, this germplasm yielded the highest number of private alleles. All five germplasms share a great portion of genetic diversity as indicated by the analysis of molecular variance (AMOVA). On the basis of the scored number of migrants, we concluded that the most intensive gene flow in the region exists in Bosnia and Herzegovina. Cluster analysis based on collected molecular data classified the accessions into two large clusters that corresponded to two gene pools of origin (i.e., Andean and Mesoamerican). We found that Andean genotypes are more prevalent than Mesoamerican in all studied countries, except Macedonia, where the two gene pools are represented evenly. This could indicate that common bean was introduced into the western Balkans mainly from the Mediterranean Basin. Bayesian cluster analysis revealed that in the area studied an additional variation exists which is related to the Andean gene pool. Different scenarios of the origin of this variation are discussed in the article.


2013 ◽  
Vol 49 (No. 4) ◽  
pp. 131-139 ◽  
Author(s):  
L.R.D. Chinnappareddy ◽  
K. Khandagale ◽  
A. Chennareddy ◽  
V.G. Ramappa

The genus Allium (Family: Alliaceae) is the most important among the bulbous vegetable crops. characterization of Alliums based on phenotypic traits is influenced by the environment and leads to biased diversity estimates. Recognizing the potential of DNA markers in plant breeding, researchers have adopted the molecular markers for marker-assisted selection (MAS), quantitative trait loci (QTL) mapping and characterization of different quality traits in Alliums. This review presents details about the use of DNA markers in Alliums for cultivar identification, diversity studies, SSR development, colour improvement, total soluble solids (TSS), cytoplasmic male sterility (CMS) and efforts of DNA sequencing. As there are no such reports to describe the above work under a single heading, we decided to mine literature for those who are working in onion, garlic, chives and leek improvement to generate new insights in the subject.


2011 ◽  
Vol 9 (2) ◽  
pp. 197-201 ◽  
Author(s):  
S. A. Angioi ◽  
D. Rau ◽  
L. Nanni ◽  
E. Bellucci ◽  
R. Papa ◽  
...  

Here, we present a brief overview of the main studies conducted on the common bean (Phaseolus vulgaris L.) in Europe and other countries outside its centres of origin. We focus on the proportions of the Andean and Mesoamerican gene pools, and on the inter-gene pool hybridization events. In Europe, for chloroplast microsatellites, 67% of European germplasm is of Andean origin. Within Europe, interesting trends have been seen; indeed, the majority of the Andean type is found in the three macro-areas of the Iberian Peninsula, Italy and central-northern Europe, while, in eastern and south-eastern Europe, the proportion of the Mesoamerican type increased. On a local scale, the contribution of the Mesoamerican type is always low. On other continents, various situations are seen using different markers: in China and Brazil, the Mesoamerican gene pool prevails, while in an African sample, overall, both gene pools are equally represented, with differences in individual countries. The frequency of European bean genotypes deriving from at least one hybridization event was 44% with an uneven distribution. Interestingly, hybrids tend to have intermediate seed size in comparison with ‘pure’ Andean or Mesoamerican types. On other continents, very few hybrids are found, probably because of the different marker systems used.


2011 ◽  
Vol 9 (01) ◽  
pp. 86-96 ◽  
Author(s):  
Lucy M. Díaz ◽  
Héctor F. Buendía ◽  
Myriam C. Duque ◽  
Matthew W. Blair

Colombia, situated at the northern end of the Andes mountains of South America and in proximity to Central America, is an important centre of diversity for common bean (Phaseolus vulgarisL.) that has a mix of cultivated germplasm from both major gene pools (Andean and Mesoamerican) for the species. Microsatellites are a useful marker system for analyzing genetic diversity of this crop and can be analyzed with manual (silver-stain) or automated (ABI) detection systems and using unlabelled or fluorescently labelled markers, respectively. The objectives of this research were to evaluate the genetic diversity of 92 Colombian landraces and gene pool controls with 36 fluorescent and 30 non-fluorescent microsatellite markers and to determine the extent of introgression between the Andean and Mesoamerican gene pools for this germplasm. A comparison of fluorescentversusnon-fluorescent marker systems was performed with 14 loci, which were evaluated with both methods; the fluorescent markers were found to be more precise than the non-fluorescent markers in determining population structure. A combined analysis of 52 microsatellites using the 36 fluorescent markers and 16 non-overlapping, silver-stained markers produced an accurate population structure for the Andean gene pool that separated race Nueva Granada and race Peru genotypes and clearly identified introgression between these races and the gene pools. The results of this research are important for the application of microsatellite markers to diversity analysis in common bean and for the conservation of landraces in Colombia and neighbouring countries of Latin America, where similar germplasm exists and where gene pool or race mixtures also occur.


Genome ◽  
1994 ◽  
Vol 37 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Viviana L. Becerra Velasquez ◽  
Paul Gepts

Eighty-five wild and cultivated accessions of common bean (Phaseolus vulgaris L.), representing a wide geographic area in the centres of domestication were tested for restriction fragment length polymorphisms (RFLPs). Genomic DNA was digested with one of three restriction enzymes (EcoRI, EcoRV, and HindIII) and hybridized to 12 probes distributed throughout the common bean genome. Accessions could be classified into two major groups with a distinct geographical distribution in Middle America and the Andes. Within each gene pool, cultivated accessions clustered together with wild forms from the same geographical area supporting the multiple domestications hypothesis for this crop. Estimates of Nei's genetic distances among the cultivated races from the two different gene pools varied from 0.12 to 0.56 and among races from the same gene pool from 0.04 to 0.12, suggesting that the divergence in Phaseolus vulgaris has reached the subspecies level. The level of genetic diversity (Ht = 0.38) was twice the value obtained with isozyme analysis. Genetic diversity within races (Hs = 0.27) was four to five times higher compared with isozymes, but genetic diversity between races (Dst = 0.11) was similar for both categories of markers. These results corroborate previous studies on the characterization of genetic diversity in common bean that clearly showed two distinct gene pools, Middle American and Andean. Moreover, RFLP markers are superior to isozymes because they provide better coverage of the genome and reveal higher level of polymorphisms.Key words: common bean, restriction fragment length polymorphism, domestication, genetic diversity.


Author(s):  
Zorica Nikolic ◽  
Mirjana Vasic ◽  
Mirjana Milosevic ◽  
Milka Vujakovic ◽  
Jelica Gvozdanovic-Varga

The biochemical marker phaseolin and isozymes were used in this work to display the variation of common bean germ plasma. Fifteen bean genotypes of different origin i. e. selections were studied. From 8 analyzed enzymic systems, enzymes MDH, SKDH, ME and IDH were polymorphic, while there were no differences in zymograms for enzymes PGM, PHI, PGD, and ADH. Analysis of phaseolin revealed two types: S and T. The S type of phaseolin was found in most of analyzed genotypes (9). Phaseolin type T was found in varieties of Novi Sad selection: Zlatko, Sremac and Aster, domestic population Zuto-zeleni Stepanovicevo and Jovandeka, Croatian variety Slavonski zuto-zeleni. Those varieties were developed from domestic populations from north-west region of Balkan, Slavonia, and Vojvodina.


1994 ◽  
Vol 119 (1) ◽  
pp. 122-125 ◽  
Author(s):  
Scott D. Haley ◽  
Phillip N. Miklas ◽  
Lucia Afanador ◽  
James D. Kelly

The objective of this study was to evaluate the degree of RAPD marker variability between and within commercially productive market classes representative of the Andean and Middle American gene pools of common bean (Phaseolus vulgaris L.). Six sets of near-isogenic lines were screened with oligonucleotide primers in the polymerase chain reaction-based RAPD assay. Simultaneous analyses with at least three sets of lines enabled us to score RAPD markers between the two major gene pools, races within the same gene pool, and different genotypes of the same race (within race). A “three-tiered” pattern of polymorphism was observed: between gene pools> between races> within races. The overall level of polymorphism between the Andean and Middle American gene pools was 83.4%. The overall level of polymorphism between races within the same gene pool was similar for Andean races (60.4%) and Middle American races (61.7%). The level of polymorphism between related commercial navy bean lines was 39.2% and between related commercial snap bean lines was 53.6 %. The inherent simplicity and efficiency of RAPD analyses, coupled with the number of polymorphisms detectable between related commercial genotypes, should facilitate the construction of RAPD-based genetic linkage maps in the context of populations representative of most bean breeding programs.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 518 ◽  
Author(s):  
Ana Campa ◽  
Ester Murube ◽  
Juan José Ferreira

A common bean (Phaseolus vulgaris) diversity panel of 308 lines was established from local Spanish germplasm, as well as old and elite cultivars mainly used for snap consumption. Most of the landraces included derived from the Spanish common bean core collection, so this panel can be considered to be representative of the Spanish diversity for this species. The panel was characterized by 3099 single-nucleotide polymorphism markers obtained through genotyping-by-sequencing, which revealed a wide genetic diversity and a low level of redundant material within the panel. Structure, cluster, and principal component analyses revealed the presence of two main subpopulations corresponding to the two main gene pools identified in common bean, the Andean and Mesoamerican pools, although most lines (70%) were associated with the Andean gene pool. Lines showing recombination between the two gene pools were also observed, most of them showing useful for snap bean consumption, which suggests that both gene pools were probably used in the breeding of snap bean cultivars. The usefulness of this panel for genome-wide association studies was tested by conducting association mapping for determinacy. Significant marker–trait associations were found on chromosome Pv01, involving the gene Phvul.001G189200, which was identified as a candidate gene for determinacy in the common bean.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205363 ◽  
Author(s):  
Muhammad Azhar Nadeem ◽  
Ephrem Habyarimana ◽  
Vahdettin Çiftçi ◽  
Muhammad Amjad Nawaz ◽  
Tolga Karaköy ◽  
...  

1985 ◽  
Vol 21 (3) ◽  
pp. 193-207 ◽  
Author(s):  
J. Smartt

SUMMARYThe genus Phaseolus as currently recognized contains four pulses: common bean (P. vulgaris), runner bean (P. coccineus), lima bean (P. lunatus) and tepary bean (P. acutifolius). Although these all have their origins in tropical and sub-tropical latitudes, they have evolved in different ecological zones. The runner bean has evolved at higher altitudes, the common bean at intermediate levels and the lima bean at lower altitudes. The tepary has a specialized desert-annual life-form. The occurrence of day neutral genotypes in all species has permitted their spread into cool and worm temperate zones (the common and runner beans) and the warm temperate zone (lima bean). It is possible therefore to grow one or other Phaseolus species in most areas of the world where cultivation can be practised. The common bean has evolved the widest range of growth forms, seed and pod sizes, pod forms and textures, and seed and pod colors. World-wide an enormous primary gene pool has been produced. The common bean pool is the secondary gene pool for the runner bean and vice versa, since partially fertile interspecific species produce sterile or inviable F1 hybrids so that potential for interspecific gene transfer is limited. Thus no known secondary gene pools exist for Phaseolus species other than P. vulgaris and P. coccineus.


Sign in / Sign up

Export Citation Format

Share Document