scholarly journals Basic strength properties of beech wood in coppice forests G.J. "Crni Vrh - Kupinovo",

2004 ◽  
pp. 141-153
Author(s):  
Zdravko Popovic ◽  
Nebojsa Todorovic

The basic mechanical properties of beech wood in coppice forest, locality Bor-Boljevac, Management unit "Crni Vrh-Kupinovo" were studied: Bending strength, modulus of elasticity in bending and shock resistance. Eight trees were taken from two series covered by the scientific-production experiment in this management unit. The statistically processed results were presented for each tree. There is a very strong correlation of the general linear form y=ax+b between the study properties, except between density and shock resistance. Static bending strength decreases mildly with tree height. The analysis shows that the average values of the study properties of beech wood at this locality are approximately the same as the values at other localities in the former SFRY. The only deviation is shock resistance.

1986 ◽  
Vol 16 (3) ◽  
pp. 491-496 ◽  
Author(s):  
R. M. Kellogg ◽  
E. P. Swan

The objective of this study was to characterize selected properties of black cottonwood and balsam poplar to determine whether these species should be distinguished in their utilization. At present, black cottonwood is excluded from the "northern aspen" species group embraced by the National Lumber Grading Agency grading rules for dimension lumber and from use as core material in softwood plywood. Samples of black cottonwood were obtained from three sites in British Columbia. Samples of balsam poplar were obtained from three sites in Alberta. Ten tres were randomly selected from each site and a single 130 cm long bolt was collected immediately above breast height (1.36 m) from each tree. From two trees on each site, three additional bolts of the same length were collected immediately above the height positions located at 25, 50, and 75% of total tree height. The average basic specific gravity of the two species did not differ significantly (black cottonwood, 0.338; balsam poplar, 0.337) in this study. However, differences do exist between site averages, at least for black cottonwood. The initial green moisture contents differ significantly (black cottonwood, 160.5%; balsam poplar, 120.6%) and may be expected to affect their drying requirements differentially. For both species, the specific gravity increases and the green moisture content decreases with increasing height position in the tree. The average fiber length of black cottonwood is significantly longer than that of balsam poplar. The bending properties of strength and stiffness for black cottonwood were found to be significantly greater than for balsam poplar. Variation of these properties with height position in the tree was studied. Fiber length was found to decrease with increasing height position, while the bending strength properties were not affected by height position.


2007 ◽  
pp. 145-154
Author(s):  
Zdravko Popovic ◽  
Nebojsa Todorovic

This paper presents the study results of the basic physical and strength properties of Hungarian oak (Quercus conferta Kit.) wood from the Kakovo Monastery forests of Hilandar Monastery in Greece. Wood properties were analyzed in detail, as an indispensable proof of wood quality and its use for joinery, interiors and wooden floors. The basic physical properties of wood (moisture content at the time of tree felling, density and volume porosity) and the basic strength properties (compressive strength, bending strength and module of elasticity) were researched. The results are presented in Tables and in Diagrams with statistical parameters and compared to the literature data. The correlation of the study properties of wood was also analyzed.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hüseyin Pelit ◽  
Fatih Emiroglu

AbstractIn this study, the effect of thermo-mechanical densification on the density, hardness, compression strength, bending strength (MOR), and modulus of elasticity (MOE) of fir and aspen wood pretreated with water repellents was analyzed. Wood specimens were impregnated with paraffin, linseed oil and styrene after pre-vacuum treatment. Then, the impregnated wood specimens were densified with compression ratios of 20 and 40%, and at 120, 150 and 180 °C. The results indicated that the density, hardness and strength properties of the all densified specimens (untreated and impregnated) increased depending on the compression ratio and temperature. For all tested properties, higher increases were obtained in the paraffin and styrene pretreated specimens compared to untreated samples. However, the increase rates in linseed oil pretreated specimens were generally lower than untreated specimens. Regarding water repellents the most successful results in all tested properties were determined in styrene pretreated specimens. The density, hardness and strength properties of all specimens increased with the increase in compression ratio. On the other hand, the increase in the compression temperature negatively affects the properties of untreated and linseed oil pretreated specimens, while having a generally positive effect on the properties of paraffin pretreated specimens. However, all tested properties of styrene pretreated specimens have increased significantly due to the increase in compression temperature. The increasing strength properties of wood as a result of densification have increased much more with paraffin and especially styrene pretreatment. These combinations can be considered as an important potential for applications that require more hardness and strength.


2018 ◽  
Vol 25 (1) ◽  
pp. 15-18
Author(s):  
Md. Mahabubur Rahaman ◽  
◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Rakibul Islam ◽  
...  

The study was conducted to find out the suitability of making particleboard using nipa palm (Nypa fruticans) stem wood and rajkoroi (Albizia richardiana) wood chips. Particleboards were fabricated at six different ratios of nipa palm stem and rajkoroi wood chips such as 100:0, 75:25, 50:50, 25:75, 10:90 and 0:100. Characteristics of particleboards such as modulus of rupture, internal bond strength, water absorption, thickness swelling and moisture content were measured. Results shows that particleboards made from 100% rajkoroi wood chips have the highest static bending properties and highest tensile strength properties of other particleboards but 100% nipa palm stem wood chips have the lowest static bending and lowest tensile strength properties of other particleboards. 10% nipa palm stem wood chips particleboard have the highest bending strength and tensile strength is better than 100% nipa palm stem wood chips and other mixing chips of particleboards. Mechanical, water resistance and dimensional stability properties were tested according to Indian standard specification. Tensile strength passed the British and German standard specification and nearest to Bureau of Indian Standard, bending strength was found nearest to Indian Standard but lower than German and British Standard specification. Strength property of rajkoroi wood chips particleboard is higher than nipa palm steam wood chips particleboard but dimensional stability is lower than nipa palm steam wood chips particleboard.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1102 ◽  
Author(s):  
Ladislav Reinprecht ◽  
Miroslav Repák

The European beech (Fagus sylvatica L.) wood was thermally modified in the presence of paraffin at the temperatures of 190 or 210 °C for 1, 2, 3 or 4 h. A significant increase in its resistance to the brown-rot fungus Poria placenta (by 71.4%–98.4%) and the white-rot fungus Trametes versicolor (by 50.1%–99.5%) was observed as a result of all modification modes. However, an increase in the resistance of beech wood surfaces to the mold Aspergillus niger was achieved only under more severe modification regimes taking 4 h at 190 or 210 °C. Water resistance of paraffin-thermally modified beech wood improved—soaking reduced by 30.2%–35.8% and volume swelling by 26.8%–62.9% after 336 h of exposure in water. On the contrary, its mechanical properties worsened—impact bending strength decreased by 17.8%–48.3% and Brinell hardness by 2.4%–63.9%.


TANSO ◽  
1985 ◽  
Vol 1985 (120) ◽  
pp. 21-27 ◽  
Author(s):  
Kenji Miyazaki ◽  
Hisayoshi Yoshida ◽  
Kazuo Kobayashi

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Yohei Kurata

Wood is widely used throughout society for building resources and paper. To further expand wood’s use in the wood industry, we tested the bending strength properties of wood and certified its internal quality by using near-infrared spectroscopy (NIRS). In this study, the relationship between bending strength and loading direction was compared by changing the light acquisition point of wood surfaces to elucidate the anisotropy of the wood using NIRS. The two loading directions were defined by using a bending test as the radial section and the tangential section. Two light acquisition points with NIRS were also defined by a bending test as the loading position (the compression surface) and the opposite surface (the tensile surface), and a comparison was made between the prediction accuracy of the wood’s mechanical strength properties obtained via a bending test using two pieces of light acquisition data. The strength properties of the wood bending tests were the elastic modulus in bending (Eb), the bending strength (Fb) and density (DEN). Cryptomeria japonica was prepared and cut into a final size of 20 mm × 20 mm × 320 mm. Near-infrared (NIR) spectra were obtained from the compression force side and the tensile force side (calculating these averages), and a partial-least-squares regression (PLSR) was performed for the regression analysis. In the NIR measurement position, the best calibration results of the PLSR were the averaged data between the side undergoing the compression force and that undergoing the tensile force. Comparing the two loading directions, the result for the radial section was slightly superior to that of the tangential section. The radial section showed a good relationship between the spectra acquisition position and the arrangement of the wood’s structure. The estimation accuracy of bending strength properties differed depending on the location where the NIR spectra acquisition was performed.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 189 ◽  
Author(s):  
Vlastimil Borůvka ◽  
Roman Dudík ◽  
Aleš Zeidler ◽  
Tomáš Holeček

This work deals with the quality of birch (Betula pendula) wood from different sites and the impact of heat treatment on it. Two degrees of heat treatment were used, 170 °C and 190 °C. The resulting property values were compared with reference to untreated wood samples. These values were wood density, compressive strength, modulus of elasticity (MOE), bending strength (MOR), impact bending strength (toughness), hardness, swelling, limit of hygroscopicity, moisture content and color change. It was supposed that an increase in heat-treatment temperature could reduce strength properties and, adversely, lead to better shape and dimensional stability, which was confirmed by experiments. It was also shown that the properties of the wood before treatment affected their condition after heat treatment, and that the characteristic values and variability of birch properties from 4 sites, 8 stems totally, were reflected in the properties of the heat-treated wood. Values of static MOR were the exception, where the quality of the input wood was less significant at a higher temperature, and this was even more significant in impact bending strength, where it manifested at a lower temperature degree. Impact bending strength also proved to be significantly negatively affected by heat treatment, about 48% at 170 °C, and up to 67% at 190 °C. On the contrary, the most positive results were the MOE and hardness increases at 170 °C by about 30% and about 21%, respectively, with a decrease in swelling at 190 °C by about 31%. On the basis of color change and other ascertained properties, there is a possibility that, after suitable heat treatment, birch could replace other woods (e.g., beech) for certain specific purposes, particularly in the furniture industry.


Sign in / Sign up

Export Citation Format

Share Document