scholarly journals A Comparison of the Loading Direction for Bending Strength with Different Wood Measurement Surfaces Using Near-Infrared Spectroscopy

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Yohei Kurata

Wood is widely used throughout society for building resources and paper. To further expand wood’s use in the wood industry, we tested the bending strength properties of wood and certified its internal quality by using near-infrared spectroscopy (NIRS). In this study, the relationship between bending strength and loading direction was compared by changing the light acquisition point of wood surfaces to elucidate the anisotropy of the wood using NIRS. The two loading directions were defined by using a bending test as the radial section and the tangential section. Two light acquisition points with NIRS were also defined by a bending test as the loading position (the compression surface) and the opposite surface (the tensile surface), and a comparison was made between the prediction accuracy of the wood’s mechanical strength properties obtained via a bending test using two pieces of light acquisition data. The strength properties of the wood bending tests were the elastic modulus in bending (Eb), the bending strength (Fb) and density (DEN). Cryptomeria japonica was prepared and cut into a final size of 20 mm × 20 mm × 320 mm. Near-infrared (NIR) spectra were obtained from the compression force side and the tensile force side (calculating these averages), and a partial-least-squares regression (PLSR) was performed for the regression analysis. In the NIR measurement position, the best calibration results of the PLSR were the averaged data between the side undergoing the compression force and that undergoing the tensile force. Comparing the two loading directions, the result for the radial section was slightly superior to that of the tangential section. The radial section showed a good relationship between the spectra acquisition position and the arrangement of the wood’s structure. The estimation accuracy of bending strength properties differed depending on the location where the NIR spectra acquisition was performed.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4029
Author(s):  
Radosław Mirski ◽  
Dorota Dziurka ◽  
Monika Chuda-Kowalska ◽  
Jakub Kawalerczyk ◽  
Marcin Kuliński ◽  
...  

The paper assessed the feasibility of manufacturing glued structural elements made of pine wood after grading it mechanically in a horizontal arrangement. It was assumed that the pine wood was not free of defects and that the outer lamellas would also be visually inspected. This would result in only rejecting items with large, rotten knots. Beams of the assumed grades GL32c, GL28c and GL24c were made of the examined pine wood. Our study indicated that the expected modulus of elasticity in bending was largely maintained by the designed beam models but that their strength was connected with the quality of the respective lamellas, rather than with their modulus of elasticity. On average, the bending strength of the beams was 44.6 MPa. The cause of their destruction was the individual technical quality of a given item of timber, which was loosely related to its modulus of elasticity, assessed in a bending test. Although the modulus of elasticity of the manufactured beam types differed quite significantly (11.45–14.08 kN/mm2), the bending strength for all types was similar. Significant differences occurred only during a more detailed analysis because lower classes were characterized by a greater variation of the bending strength. In this case, beams with a strength of 24 MPa to 50 MPa appeared.


2012 ◽  
Vol 517 ◽  
pp. 683-688 ◽  
Author(s):  
Wan Li Lou ◽  
Hai Qing Ren ◽  
Zhao Hui Wang ◽  
Xiu Qin Luo

Larch dimension lumber bending strength properties from full-size bending test were used to establish preliminary grade boundary settings for mechanical grading of lumber by modulus of elasticity. Simulated production using the grade boundary settings were evaluated for modulus of rupture, ultimate tensile strength, and ultimate compressive strength. The results showed a good relationship between modulus of rupture and modulus of elasticity, and the observed relationships between strengths properties were consistent with that assumed for the standard grades. Through mechanical grading, larch dimension lumber could be sort grades: M14, M30 and M40. Assuming the visual requirements are met, the M30 and M40 grades account for more than 80% of the total production. Mechanical grading of larch appears to be a viable approach for grading Chinese large for structural applications.


2010 ◽  
Vol 129-131 ◽  
pp. 576-579
Author(s):  
Bing Xue ◽  
Ying Cheng Hu ◽  
Fang Chao Cheng

Laminated Veneer Lumber (LVL) panels made from birch (Betula platyphylla Suk.) veneers were tested for physical and mechanical strength properties in this study. The static bending test were conducted on the LVL, and bending test and shear test were conducted on veneer and three-lamination LVL. The effects of the relative humidity on the modulus of elasticity (MOE) and bending strength (MOR) of birch LVL with vertical load and parallel load were investigated. There were four relative humidities including 40%, 50%, 60% and 70%. The results showed that the MOE and MOR of LVL would diminished with the increase of relative humidity, the bending strength of veneer sample decreased as the relative humidity increased, and there was noticeable effect of relative humidity on shear strength of PF resin.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hüseyin Pelit ◽  
Fatih Emiroglu

AbstractIn this study, the effect of thermo-mechanical densification on the density, hardness, compression strength, bending strength (MOR), and modulus of elasticity (MOE) of fir and aspen wood pretreated with water repellents was analyzed. Wood specimens were impregnated with paraffin, linseed oil and styrene after pre-vacuum treatment. Then, the impregnated wood specimens were densified with compression ratios of 20 and 40%, and at 120, 150 and 180 °C. The results indicated that the density, hardness and strength properties of the all densified specimens (untreated and impregnated) increased depending on the compression ratio and temperature. For all tested properties, higher increases were obtained in the paraffin and styrene pretreated specimens compared to untreated samples. However, the increase rates in linseed oil pretreated specimens were generally lower than untreated specimens. Regarding water repellents the most successful results in all tested properties were determined in styrene pretreated specimens. The density, hardness and strength properties of all specimens increased with the increase in compression ratio. On the other hand, the increase in the compression temperature negatively affects the properties of untreated and linseed oil pretreated specimens, while having a generally positive effect on the properties of paraffin pretreated specimens. However, all tested properties of styrene pretreated specimens have increased significantly due to the increase in compression temperature. The increasing strength properties of wood as a result of densification have increased much more with paraffin and especially styrene pretreatment. These combinations can be considered as an important potential for applications that require more hardness and strength.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuminobu Ozaki ◽  
Takumi Umemura

PurposeIn this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.Design/methodology/approachThe engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.FindingsIt was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).Originality/valueRegarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.


2018 ◽  
Vol 25 (1) ◽  
pp. 15-18
Author(s):  
Md. Mahabubur Rahaman ◽  
◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Rakibul Islam ◽  
...  

The study was conducted to find out the suitability of making particleboard using nipa palm (Nypa fruticans) stem wood and rajkoroi (Albizia richardiana) wood chips. Particleboards were fabricated at six different ratios of nipa palm stem and rajkoroi wood chips such as 100:0, 75:25, 50:50, 25:75, 10:90 and 0:100. Characteristics of particleboards such as modulus of rupture, internal bond strength, water absorption, thickness swelling and moisture content were measured. Results shows that particleboards made from 100% rajkoroi wood chips have the highest static bending properties and highest tensile strength properties of other particleboards but 100% nipa palm stem wood chips have the lowest static bending and lowest tensile strength properties of other particleboards. 10% nipa palm stem wood chips particleboard have the highest bending strength and tensile strength is better than 100% nipa palm stem wood chips and other mixing chips of particleboards. Mechanical, water resistance and dimensional stability properties were tested according to Indian standard specification. Tensile strength passed the British and German standard specification and nearest to Bureau of Indian Standard, bending strength was found nearest to Indian Standard but lower than German and British Standard specification. Strength property of rajkoroi wood chips particleboard is higher than nipa palm steam wood chips particleboard but dimensional stability is lower than nipa palm steam wood chips particleboard.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2118 ◽  
Author(s):  
Marek Pszczola ◽  
Cezary Szydlowski

In regions with low-temperatures, action transverse cracks can appear in asphalt pavements as a result of thermal stresses that exceed the fracture strength of materials used in asphalt layers. To better understand thermal cracking phenomenon, strength properties of different asphalt mixtures were investigated. Four test methods were used to assess the influence of bitumen type and mixture composition on tensile strength properties of asphalt mixtures: tensile strength was measured using the thermal stress restrained specimen test (TSRST) and the uniaxial tension stress test (UTST), flexural strength was measured using the bending beam test (BBT), and fracture toughness was measured using the semi-circular bending test (SCB). The strength reserve behavior of tested asphalt mixtures was assessed as well. The influence of cooling rate on the strength reserve was investigated and correlations between results from different test methods were also analyzed and discussed. It was observed that the type of bitumen was a factor of crucial importance to low-temperature properties of the tested asphalt concretes. This conclusion was valid for all test methods that were used. It was also observed that the level of cooling rate influenced the strength reserve and, in consequence, resistance to low-temperature cracking. It was concluded that reasonably good correlations were observed between strength results for the UTST, BBT, and SCB test methods.


2005 ◽  
Vol 297-300 ◽  
pp. 2046-2051 ◽  
Author(s):  
Jin Wook Kim ◽  
B.W. Park ◽  
Seok Hwan Ahn ◽  
Ki Woo Nam

This paper reports for signal characteristics of before-and-after healing treatment SiC ceramics with crack healing ability. The elastic wave signals generated during the compress load by a Vickers indenter on the brittle materials were recorded in real time, and the waveforms of the individual signals were examined and classified based on their spectral characteristics. The compress loads were applied with the range from 9.8N to 294N. In a bulk SiC specimen, the AE signals occurred only when the load was compressive loading and unloading. But, in the after crack healing specimen of 294N only, even though the external compressive load was stopped and kept on holding constant load states, the AE signals occurred irregularly and continuously. The results of the WT and frequency analysis showed that these existed as the property of frequency in the limited range between 100kHz and about 200kHz. Three-point bending test was performed for the cracked and healed SiC specimens. Consequently the bending strength of the crack healed specimens was recovered completely, but most of the samples with the crack healed showed that the properties of the dominant frequency were comparatively lower than that of the bulk SiC samples. The classification of the wave signals can be used to develop algorithms for autonomous health monitoring systems of brittle material structures.


2012 ◽  
Vol 184-185 ◽  
pp. 1163-1166
Author(s):  
Xi An Xie ◽  
Gao Feng Quan

Through the four-point bending test of lath-shaped heat treated AZ31 magnesium alloy, the bending properties and damage characteristics were explored. The results show that the optimal bending strength of the magnesium alloy were 355.1MPa and 259.2MPa for extruded and cast samples, respectively, after corresponding heat treatment with 350°C, 90min and 400°C, 30min. The initial cracks both occurred at the loading point after applied load exceeded the yield limit of AZ31 magnesium alloy. Surface bump, cracks and other damage morphology accompanied by a large number of twinning organizations were found on the surface of the samples.


Sign in / Sign up

Export Citation Format

Share Document