scholarly journals Role of nitric oxide and peroxynitrite in apoptosis - relation to endonuclease activity

2003 ◽  
Vol 22 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Gordana Kocic ◽  
Dusica Pavlovic ◽  
Vidosava Djordjevic ◽  
Gordana Bjelakovic ◽  
Ivana Stojanovic

Apoptosis is a form of cell death utilized physiologically to maintain tissue homeostasis, as well as in response to various toxic and inflammatory stimuli or anticancer drugs. Since the process of apoptosis is followed by phagocytosis, the cleavage of DNA to low molecular weight material may serve as a protective function limiting the probability of gene transfer to the nuclei of viable neighbor cells. Many different endonucleases have been proposed as candidates responsible for the internucleosomal cleavage of the genomic DNA observed during apoptosis. The main effect was attributed to the alkaline DNase I (Mg 2+ and caspase-dependent) and acid-DNase II. It was also documented that both of them contain a potential protease (caspase) cleavage site, but they can be also activated upon the influence of other "fragmentation factors", including nitric oxide (NO). The complexity of biological effects induced by NO may be the result of the cell redox state changes, due to its potential interaction with superoxide. The apoptotic effect of both, nitric oxide (NO) and peroxynitrite (ONOO) are dose-dependent and cell-specific may point out the existence of possible "inducible" form of endonuclease.

2018 ◽  
Vol 33 (3) ◽  
pp. 3190-3197 ◽  
Author(s):  
Dale D. O. Martin ◽  
Mandi E. Schmidt ◽  
Yen T. Nguyen ◽  
Nikola Lazic ◽  
Michael R. Hayden

2003 ◽  
Vol 1255 ◽  
pp. 257-264
Author(s):  
M. Samiul Alam ◽  
T. Akaike ◽  
H. Maeda

2005 ◽  
Vol 385 (3) ◽  
pp. 815-821 ◽  
Author(s):  
Stephen R. CLARK ◽  
Peter B. ANNING ◽  
Marcus J. COFFEY ◽  
Andrew G. ROBERTS ◽  
Lawrence J. MARNETT ◽  
...  

PGHS-2 (prostaglandin H synthase-2) is induced in mammalian cells by pro-inflammatory cytokines in tandem with iNOS [high-output (‘inducible’) nitric oxide synthase], and is co-localized with iNOS and nitrotyrosine in human atheroma macrophages. Herein, murine J774.2 macrophages incubated with lipopolysaccharide and interferon γ showed induction of PGHS-2 and generated NO using iNOS that could be completely depleted by 12(S)-HPETE [12(S)-hydroperoxyeicosatetraenoic acid; 2.4 μM] or hydrogen peroxide (500 μM) (0.42±0.084 and 0.38±0.02 nmol·min−1·106 cells−1 for HPETE and H2O2 respectively). COS-7 cells transiently transfected with human PGHS-2 also showed HPETE- or H2O2-dependent NO decay (0.44±0.016 and 0.20±0.04 nmol·min−1·106 cells−1 for 2.4 μM HPETE and 500 μM H2O2 respectively). Finally, purified PGHS-2 consumed NO in the presence of HPETE or H2O2 (168 and 140 μM·min−1·μM enzyme−1 for HPETE and H2O2 respectively), in a haem-dependent manner, with 20 nM enzyme consuming up to 4 μM NO. Km (app) values for NO and 15(S)-HPETE were 1.7±0.2 and 0.45±0.16 μM respectively. These data indicate that PGHS-2 catalytically consumes NO during peroxidase turnover and that pro-inflammatory cytokines simultaneously upregulate NO synthesis and degradation pathways in murine macrophages. Catalytic NO consumption by PGHS-2 represents a novel interaction between NO and PGHS-2 that may impact on the biological effects of NO in vascular signalling and inflammation.


2016 ◽  
Vol 94 (8) ◽  
pp. 849-857
Author(s):  
Wenhe Zhu ◽  
Yan Cui ◽  
Xianmin Feng ◽  
Yan Li ◽  
Wei Zhang ◽  
...  

Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm2 for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I–IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.


2000 ◽  
Vol 32 ◽  
pp. 87
Author(s):  
G. Ballardini ◽  
S. Ghetti ◽  
A. Grassi ◽  
F. Lari ◽  
D. Zauli ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Sign in / Sign up

Export Citation Format

Share Document