scholarly journals Effect of casting and rolling process parameters on solidification welding line of magnesium alloy

Author(s):  
Z. Huang ◽  
H.-Y. Lai ◽  
H.-B. Zhou ◽  
H. Guo

Process of horizontal twin roll casting magnesium alloy was analyzed by numerical simulation. Taking solidification welding line in cast rolling area as research object, the characteristic change of solidification welding line caused by casting rolling temperature, casting rolling speed and roll heat transfer capacity and its influence on the forming process of casting rolling area were analyzed. The results show that increasing casting temperature, casting speed or reducing heat transfer capacity of roll can make solidification welding line shift to exit of casting rolling zone. Increasing casting temperature and casting speed will increase difference between middle and edge of the solidification welding line along casting direction. And heat distribution of whole slab is more uniform. However, effect of improving heat transfer capacity of roll is completely opposite. According to this, optimum process parameters of casting and rolling magnesium alloy with plate thickness of 6 mm are put forward to reduce probability of edge crack.

2014 ◽  
Vol 960-961 ◽  
pp. 43-46
Author(s):  
Zhao Yan

Modern society,with the rapid development of economy,people living standard increasing, for the plate demand continues to grow. Because the forest resources dwindling, To make full use of waste bagasse, corn straw and non wood fiber materials to produce an artificial plate material instead of wood man-made board has be imperative.Corn straw shavings can realize the recycling of waste materials, bring the economic value, so this topic with corn straw shavings as raw material, in the laboratory preparation of melamine resin adhesive, pressing flake molded sheet.Melamine plastic using M ( melamine ):U ( urea ) :F ( formaldehyde ) =1∶0.6∶2.5, adhesive solid content is 54%, the sizing, hot pressing temperature, hot pressing time as three factors orthogonal experiment, pressed sheet. On the plate thickness swelling, internal bond strength and surface plate bending strength test, on the analysis and summarization of results, the optimum process parameters: sizing quantity20%, temperature 150 °C, hot pressing time25min. The corresponding optimum mechanical properties: the absorbing water thickness expansion rate (2H ) 9.76%, inner strength, bend strength of17.49Mpa,0.45MPa. Key words: Non wood shavings; Molded sheet; Process parameters; Mechanical properties


2013 ◽  
Vol 747-748 ◽  
pp. 412-420 ◽  
Author(s):  
Xiao Ping Liang ◽  
Lei Xiao ◽  
Sang Sang Liao ◽  
Bin Jiang

The control of process parameters in the horizontal twin-roll casting is crucial for the quality of sheet and the continuity of the process. A temperature field coupled with flow field mathematical model was established during the horizontal twin-roll casting of AZ31 magnesium alloy sheet with 1500mm in width and 8mm in thickness in this paper. The temperature field in the casting zone was solved by the software ANSYS. The effect of process factors, such as casting speed, pouring temperature and cooling intensity, on casting zone temperature of different process parameters were studied. Based on the solved temperature field, with the hot roll formula and test data of yield strength, the effect of casting speed, pouring temperature and cooling intensity on cast-rolling force in the cast-rolling zone was also dicussed. The results indicate that the casting speed has the greatest effect upon the temperature field and cast-rolling force, while the pouring temperature is the least. In addition, the value of critical cooling intensity increased with the increase of the casting speed. The quality defect called melt sheet or the leakage phenomenon appear when the cooling intensity is lower than the minimal critical cooling intensity value, and crack or rolling suspended appear if the cooling intensity is higher than the maximal critical cooling intensity value. When the casting speed are 1m/min, 2m/min and 3m/min, the minimal and maximal critical cooling intensity are 500, 1200, 2 000 W/(m2.K) and 2500, 5000, 7500 W/(m2.K) respectively.


2013 ◽  
Vol 1 (3) ◽  
pp. 37-42
Author(s):  
Deepak Rajendra Unune ◽  
◽  
Amit Aherwar ◽  
B.P. Pathri ◽  
Jai Kishan ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Ram Balak Mahto ◽  
Mukesh Yadav ◽  
Soumya Sasmal ◽  
Biswnath Bhunia

Background: Pectinase enzyme has immense industrial prospects in the food and beverage industries. </P><P> Objective: In our investigation, we find out the optimum process parameters suitable for better pectinase generation by Bacillus subtilis MF447840.1 using submerged fermentation. </P><P> Method: 2% (OD600 nm = 0.2) of pure Bacillus subtilis MF447840.1 bacterial culture was inoculated in sterile product production media. The production media components used for this study were 1 g/l of pectin, 2 g/l of (NH4)2SO4, 1 g/l of NaCl, 0.25 g/l of K2HPO4, 0.25 g/l of KH2PO4 and 1 g/l of MgSO4 for pectinase generation. We reviewed all recent patents on pectinase production and utilization. The various process parameters were observed by changing one variable time method. </P><P> Results: The optimum fermentation condition of different parameters was noticed to be 5% inoculums, 25% volume ratio, temperature (37°C), pH (7.4) and agitation rate (120 rpm) following 4 days incubation. </P><P> Conclusion: Maximum pectinase generation was noticed as 345 ± 12.35 U following 4 days incubation.


2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Sign in / Sign up

Export Citation Format

Share Document