scholarly journals Search for source rocks of the crude oils of the Drmno depression, southern part of the Pannonian Basin, Serbia

2002 ◽  
Vol 67 (8-9) ◽  
pp. 553-566 ◽  
Author(s):  
Branimir Jovancicevic ◽  
H. Wehner ◽  
G. Scheeder ◽  
K. Stojanovic ◽  
Aleksandar Sainovic ◽  
...  

In a search for source rocks of the crude oils of the Drmno depression (southern part of the Pannonian Basin, Serbia), based on bulk and specific organic geochemical parameters, six out of eight Sirakovo, Bubu{inac and Bradarac sedimentary core samples were found to possess typical source rock characteristics. By comparing the results observed for these sedimentary samples with the corresponding properties of the crude oils from the Sirakovo and Bradarac oil-gas fields, a positive organic geochemical oil-source rock correlation was experienced for the first time within this basin. This finding may be considered as an important step towards the ultimate organic geochemical/geological interpretation of the Drmno depression.

2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2020 ◽  
Vol 38 (6) ◽  
pp. 2695-2710
Author(s):  
Yao-Ping Wang ◽  
Xin Zhan ◽  
Tao Luo ◽  
Yuan Gao ◽  
Jia Xia ◽  
...  

The oil–oil and oil–source rock correlations, also termed as geochemical correlations, play an essential role in the construction of petroleum systems, guidance of petroleum exploration, and definition of reservoir compartments. In this study, the problems arising from oil–oil and oil–source rock correlations were investigated using chemometric methods on oil and source rock samples from the WZ12 oil field in the Weixinan sag in the Beibuwan Basin. Crude oil from the WZ12 oil field can be classified into two genetic families: group A and B, using multidimensional scaling and principal component analysis. Similarly, source rocks of the Liushagang Formation, including its first, second, and third members, can be classified into group I and II, corresponding to group B and A crude oils, respectively. The principle geochemical parameters in the geochemical correlation for the characterisation and classification of crude oils and source rocks were 4MSI, C27Dia/C27S, and C24 Tet/C26 TT. This study provides insights into the selection of appropriate geochemical parameters for oil–oil and oil–source rock correlations, which can also be applied to other sedimentary basins.


2020 ◽  
Vol 113 (1) ◽  
pp. 24-42
Author(s):  
Emilia Tulan ◽  
Michaela S. Radl ◽  
Reinhard F. Sachsenhofer ◽  
Gabor Tari ◽  
Jakub Witkowski

AbstractDiatomaceous sediments are often prolific hydrocarbon source rocks. In the Paratethys area, diatomaceous rocks are widespread in the Oligo-Miocene strata. Diatomites from three locations, Szurdokpüspöki (Hungary) and Limberg and Parisdorf (Austria), were selected for this study, together with core materials from rocks underlying diatomites in the Limberg area. Bulk geochemical parameters (total organic carbon [TOC], carbonate and sulphur contents and hydrogen index [HI]) were determined for a total of 44 samples in order to study their petroleum potential. Additionally, 24 samples were prepared to investigate diatom assemblages.The middle Miocene diatomite from Szurdokpüspöki (Pannonian Basin) formed in a restricted basin near a volcanic silica source. The diatom-rich succession is separated by a rhyolitic tuff into a lower non-marine and an upper marine layer. An approximately 12-m thick interval in the lower part has been investigated. It contains carbonate-rich diatomaceous rocks with a fair to good oil potential (average TOC: 1.28% wt.; HI: 178 to 723 mg HC/g TOC) in its lower part and carbonate-free sediments without oil potential in its upper part (average TOC: 0.14% wt.). The composition of the well-preserved diatom flora supports a near-shore brackish environment. The studied succession is thermally immature. If mature, the carbonate-rich part of the succession may generate about 0.25 tons of hydrocarbons per square meter. The diatomaceous Limberg Member of the lower Miocene Zellerndorf Formation reflects upwelling along the northern margin of the Alpine-Carpathian Foreland. TOC contents are very low (average TOC: 0.13% wt.) and demonstrate that the Limberg Member is a very poor source rock. The same is true for the underlying and over-lying rocks of the Zellerndorf Formation (average TOC: 0.78% wt.). Diatom preservation was found to differ considerably between the study sites. The Szurdokpüspöki section is characterised by excellent diatom preservation, while the diatom valves from Parisdorf/Limberg are highly broken. One reason for this contrast could be the different depositional environments. Volcanic input is also likely to have contributed to the excellent diatom preservation in Szurdokpüspöki. In contrast, high-energy upwelling currents and wave action may have contributed to the poor diatom preservation in Parisdorf. The hydrocarbon potential of diatomaceous rocks of Oligocene (Chert Member; Western Carpathians) and Miocene ages (Groisenbach Member, Aflenz Basin; Kozakhurian sediments, Kaliakra canyon of the western Black Sea) has been studied previously. The comparison shows that diatomaceous rocks deposited in similar depositional settings may hold largely varying petroleum potential and that the petroleum potential is mainly controlled by local factors. For example, both the Kozakhurian sediments and the Limberg Member accumulated in upwelling environments but differ greatly in source rock potential. Moreover, the petroleum potential of the Szurdokpüspöki diatomite, the Chert Member and the Groisenbach Member differs greatly, although all units are deposited in silled basins.


2001 ◽  
Vol 66 (5) ◽  
pp. 297-308 ◽  
Author(s):  
B. Jovancicevic ◽  
H. Wehner ◽  
G. Scheeder ◽  
D. Plecas ◽  
M. Ercegovac ◽  
...  

The results of an investigation of crude oils originating from the Sirakovo and Bradarac-Maljurevac localities (southern part of the Pannonian Basin) are reported in this paper. The aim was to estimate the organic geochemical similarity of the crude oils from the Drmno (Kostolac) depression oil fields. The nine selected samples originated from reservoir rocks of various depths. Reliable source and organic geochemical maturation parameters served as the basis for the correlation studies. The similar origin of the investigated Drmno depression crude oils was corroborated, characterized by a significant participation of terrestrial precursor biomass. They were shown to be of relatively low maturity and to have been formed during the earlier stages of the diagenetic-catagenetic sequence of processes leading to the formation of crude oils, most probably in source rocks ofTertiary age, corresponding to vitrinite reflectances between Ro = 0.70 % and Ro = 0.80 %. The crude oils from Bradarac-Maljurevac seemed to be somewhat less homogeneous with respect to organic geochemical parameters compared to Sirakovo crude oils.


1999 ◽  
Vol 39 (1) ◽  
pp. 399
Author(s):  
B.G.K. van Aarssen ◽  
T.P. Bastow ◽  
R ◽  
Alexander ◽  
R.I. Kagi

Variations in higher-plant-derived biomarkers in sedimentary sequences reflect changes in the palaeoclimatic conditions at the time of deposition. It is thought that changes in climate affect the distribution of higher plant populations growing on the hinterland, thus changing the contribution of these plants into the sediments. These variations can be measured using the abundances of three aromatic hydrocarbons: retene, cadalene and iP-iHMN. This was done for a Jurassic sedimentary sequence from the Koolinda–1 well in the Barrow Sub-basin, The obtained profile was related to an absolute time-scale. Measurement of the higher-plant-derived biomarkers in crude oils from the Barrow Sub-basin enabled accurate measurement of the age of their source rocks by using the Koolinda–1 profile as a reference. Most of these oils correlate with the Jurassic W. spectabilis dinoflagellate zone in the Oxfordian. Within this zone the oils fall into four age groups, reflecting four oil-prone intervals each separated by approximately 0.2 My. The oils that have been generated from each group can be found in specific reservoirs in the sub-basin, showing a pattern of migration away from the depocentre with decreasing age of the source rock. This method of determining the source rock age of crude oils enables detailed oil-source rock correlations. On a basin-wide scale it can provide insight into the location of major source rocks and migration pathways.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Chunfang Cai ◽  
Chenlu Xu ◽  
Wenxiang He ◽  
Chunming Zhang ◽  
Hongxia Li

The potential parent source rocks except from Upper Permian Dalong Formation (P3d) for Upper Permian and Lower Triassic solid bitumen show high maturity to overmaturity with equivalent vitrinite reflectance (ERo) from 1.7% to 3.1% but have extractable organic matter likely not contaminated by younger source rocks. P3d source rocks were deposited under euxinic environments as indicated by the pyrite δ34S values as light as -34.5‰ and distribution of aryl isoprenoids, which were also detected from the Lower Silurian (S1l) source rock and the solid bitumen in the gas fields in the west not in the east. All the solid bitumen not altered by thermochemical sulfate reduction (TSR) has δ13C and δ34S values similar to part of the P3l kerogens and within the S1l kerogens. Thus, the eastern solid bitumen may have been derived from the P3l kerogens, and the western solid bitumen was likely to have precracking oils from P3l kerogens mixed with the S1l or P3d kerogens. This case-study tentatively shows that δ13C and δ34S values along with biomarkers have the potential to be used for the purpose of solid bitumen and source rock correlation in a rapidly buried basin, although further work should be done to confirm it.


Sign in / Sign up

Export Citation Format

Share Document