scholarly journals Sensitive voltammetric detection of yeast RNA based on its interaction with Victoria Blue B

2009 ◽  
Vol 74 (12) ◽  
pp. 1467-1476 ◽  
Author(s):  
Weili Zhang ◽  
Xueliang Niu ◽  
Na Zhao ◽  
Wei Sun

Voltammetric studies of the interaction of yeast RNA (y-RNA) with Victoria Blue B (VBB) are described in this paper. Furthermore, a linear sweep voltammetric method for the detection of y-RNA was established. The reaction conditions, such as acidity and amount of buffer solution, the concentration of VBB, the reaction time and temperature, etc., were carefully investigated by second order derivative linear sweep voltammetry. Under the optimal conditions, the reduction peak current of VBB at -0.75V decreased greatly after the addition of y-RNA to the solution without any shift of the reduction peak potential. Based on the decrease of the peak current, a new quantitative method for the determination of y-RNA was developed. The effects of co-existing substances on the determination were carefully investigated and three synthetic samples were determined with satisfactory results. The stoichiometry of the VBB-y-RNA complex was calculated by linear sweep voltammetry and the interaction mechanism is discussed.

2006 ◽  
Vol 60 (3) ◽  
Author(s):  
W. Sun ◽  
J. You ◽  
X. Hu ◽  
K. Jiao

AbstractIn pH 3.5 Britton—Robinson buffer solution double-stranded (ds) DNA can react with malachite green (MG) to form an interaction complex, which resulted in the decrease of the electrochemical response of MG, MG had a well-defined second-order derivative linear sweep voltammetric peak at −0.73 V (vs. SCE). After the addition of dsDNA into MG solution, the reductive peak current decreased with the positive shift of peak potential, which was the typical characteristic of intercalation. Based on the interaction, an indirect electrochemical determination method for dsDNA was established. The optimum conditions for the reaction were investigated and there were little or no interferences from the commonly coexisting substances. The decrease of peak current was linear with the concentration of dsDNA over the range of 0.8–12.0 µg cm−3 with the linear regression equation as ΔI p″/nA = 91.70 C/(µg cm−3) + 74.55 (n = 10, γ = 0.990). The detection limit was calculated as 0.46 µg cm−3 (3σ). The method had high sensitivity and was further applied to the dsDNA synthetic samples with satisfactory result. The interaction mechanism was discussed with the intercalation of DNA-MG to form a supramolecular complex and the stoichiometry of the supramolecular complex was calculated by electrochemical method with the binding number 3 and the binding constant 2.35 × 1015 (mol dm−3)−3.


2014 ◽  
Vol 79 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Xueliang Niu ◽  
Pingping Zhang ◽  
Weili Zhang ◽  
Wei Sun

In this paper, the interaction of cupferron (Cup) and lead (II) complex [Cup-Pb (II)] with chondroitin sulfate (CS) was investigated by linear sweep voltammetric method. In the selected medium of pH 5.5 (acetic acid-hexamine buffer solution), Cup can interact with Pb (II) to form a stable complex of [Cup-Pb(II)], which has a sensitive second order derivative polarographic reductive peak at -0.64V (vs.SCE). After the addition of CS into Cup-Pb (II) complex solution, the reductive peak current decreased without any shift of the peak potential and no new peak appeared, which indicated that an unelectroactive supramolecular complex of CS with [Cup-Pb(II)] was formed. The binding reaction conditions were carefully investigated. Under the optimal conditions, the interaction mechanism was discussed. The decrease of reductive peak current was directly proportional to the CS concentration, thus a new quantitative determination method for CS was established with the linear regression equation as ?Ip?(nA)=36.97 C/mg L-1+12.45 (n=10, ?=0.995). The effects of other substances on the determination were carefully investigated and three synthetic samples were determined with satisfactory results. The binding constant (?s) and the binding number (m) of CS with [Cup-Pb(II)] complex were calculated from the voltammetric data with the results as ?s=1.89?1010 and m?2.5.


2013 ◽  
Vol 9 (2) ◽  
pp. 1900-1910
Author(s):  
WeiLi Zhang ◽  
XueLiang Niu ◽  
Ping Ping Zhang ◽  
Wei Sun

In this paper, the interaction of hyaluronic acid (HA) with crystal violet (CV) was investigated carefully by linear sweep voltammetry on the dropping mercury working electrode (DME). In pH 5.0 Britton-Robinson (B-R) buffer solution, CV has a sensitive, well-defined second order derivative linear sweep voltammetric reductive wave at –0.85 V (vs. SCE). After adding a certain amount of HA into CV solution, the reductive peak current decreased without any shift of reductive peak potential. Based on the difference in the reductive peak current, a new voltammetric method for the detection of HA was established. The reaction conditions and the electrochemical determination were studied and optimized. Under the optimized conditions, the decrease of peak current showed a good linear relationship with the HA concentration in the range from 10.0 to 40.0 mg/L. The linear regression equation was got as ∆ip″(nA)= 84.07 C–527.86  (mg/L) (n=8, γ=0.997) and the detection limit was calculated as 2.65 mg/L (3σ). This new established method was further used to HA determination in the synthetic samples with satisfactory results and good recovery. The stoichiometry of CV-HA complex was calculated and the binding mechanism was also discussed by the electrochemical data.


2015 ◽  
Vol 80 (1) ◽  
pp. 87-96
Author(s):  
Ni Hui ◽  
Aiqin Liang ◽  
Changhui Xue ◽  
Wei Sun

By using the linear sweep voltammetric technique, a phenanthroline (Phen) and zinc(II) (Phen-Zn(II)) complex was used as the electrochemical probe for the determination of double-stranded (ds) DNA. In pH 9.0 Britton- -Robinson (B-R) buffer solution, Phen can interact with Zn(II) to form a stable electroactive [Phen-Zn(II)] complex, which had a sensitive second order derivative polarographic reductive peak at -1.300 V (vs. SCE). After the addition of dsDNA into a solution of Phen-Zn(II) complex, the reduction peak current decreased with a negative shift of the reduction peak potential and without the appearance of new peaks. The results showed that a new supramolecular complex was formed via interaction of the Phen-Zn(II) complex with dsDNA. The conditions of interaction and the electrochemical detection were carefully investigated. Under the optimum conditions, the decrease in the reduction peak current was directly proportional to the dsDNA concentration in the range of 0.4-18.0 mg L-1 with the linear regression equation: ?Ip?/nA = 349.48 + + 84.647(c/mg L-1) (n = 13, ? = 0.991) and a determination limit of 0.20 mg L-1 (3?). The relative standard deviation (RSD) for 10 parallel determinations of 10.0 mg L-1 dsDNA was found to be 2.03 %. The method was successfully applied to the detection of synthetic samples with satisfactory results.


2007 ◽  
Vol 72 (11) ◽  
pp. 1085-1094 ◽  
Author(s):  
Wei Sun ◽  
Na Zhao ◽  
Xianlong Yuan ◽  
Kui Jiao

The interaction of acridine orange (AO) with double-stranded (ds) DNA in aqueous solution was investigated by linear sweep polarography (LSP) on a dropping mercury working electrode (DME). In pH 2.5 Britton-Robinson (B-R) buffer solution, AO had a sensitive linear sweep polarographic reductive peak at -0.89 V (vs. SCE), which could be greatly inhibited by the addition of dsDNA, with a positive shift of the peak potential. Based on the decrease of the reductive peak current, a new quantitative electrochemical determination method for dsDNA was developed with a linear range of 2.0?20.0 mg l-1 and the linear regression equation: ?Ip" (nA) = 111.90 C (mg l-1)+125.32 (n = 9, ? = 0.997). The influences of commonly co-existing substances, such as metal ions, amino acid, etc., on the determination were also investigated. The method is sensitive, rapid and simple with good selectivity. The new proposed method was further applied to the detection of RNA and three synthetic samples containing dsDNA with satisfactory results. The binding number and the equilibrium constant between dsDNA and AO were calculated by an electrochemical method.


2017 ◽  
Vol 231 (5) ◽  
Author(s):  
Jyothi C. Abbar ◽  
Manjunath D. Meti ◽  
Sharanappa T. Nandibewoor

AbstractThe anodic voltammetric behavior of an antibiotic drug, lincomycin hydrochloride (LIN) at gold electrode (GE) has been investigated using cyclic and linear sweep voltammetry. The dependence of the current on pH, concentration and scan rate were investigated to optimize the experimental conditions for the determination of lincomycin. The anodic peak was characterized and the process was adsorption-controlled. The number of electrons transferred in the oxidation process was calculated. In the range of 8.0×10


1997 ◽  
Vol 249 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Vernon D. Parker ◽  
Alisa Roddick ◽  
Lance C. Seefeldt ◽  
Haijiang Wang ◽  
Gang Zheng

2016 ◽  
Vol 99 (5) ◽  
pp. 1287-1294 ◽  
Author(s):  
Yudong Gao ◽  
Zhengkun Xie ◽  
Yulong Zhang ◽  
Lina Zou ◽  
Baoxian Ye

Abstract A simple and sensitive voltammetric sensor for Orange II was developed, based on a poly(sodium p-styrenesulfonate)-functionalized graphene-modified glassy carbon electrode. This voltammetric sensor showed strong accumulation ability and an excellent voltammetric response for Orange II. The electrochemical behavior of Orange II was systematically investigated in a pH 7.0 phosphate buffer solution. By linear sweep voltammetry, under optimum conditions, a good linear relationship was obtained between peak currents and Orange II concentrations in the wider range of 3 × 10−8 to 5 × 10−6 mol/L, with an LOD of 1 × 10−8 mol/L. In addition, the proposed Orange II sensor was successfully applied to real food samples with satisfactory recovery.


Sign in / Sign up

Export Citation Format

Share Document