scholarly journals Existence and uniqueness of the solution for Lobacevsky’s functional equation

Author(s):  
Nicolae Neamtu

The purpose of this paper is to give a theorem for the existence and uniqueness of solution of Lobacevsky's functional equation and to effective find it.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations(Dα-ρtDβ)x(t)=f(t,x(t),Dγx(t)),t∈(0,1)with boundary conditionsx(0)=x0,  x(1)=x1or satisfying the initial conditionsx(0)=0,  x′(0)=1, whereDαdenotes Caputo fractional derivative,ρis constant,1<α<2,and0<β+γ≤α. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions onf.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Li Wei ◽  
Liling Duan ◽  
Haiyun Zhou

By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta (1978), the abstract result on the existence and uniqueness of the solution inLp(Ω)of the generalized Capillarity equation with nonlinear Neumann boundary value conditions, where2N/(N+1)<p<+∞andN≥1denotes the dimension ofRN, is studied. The equation discussed in this paper and the methods here are a continuation of and a complement to the previous corresponding results. To obtain the results, some new techniques are used in this paper.


Author(s):  
Bin He ◽  
Guangsheng Wei

In this paper, we consider a class of functional equation Q(λ)Y (λ) −P(λ)Z(λ) = η related to sine type functions, where the known P,Q are appropriate entire functions of exponential type. We are concerned with the existence and uniqueness of the solution (Y,Z) under certain circumstances. Furthermore, we modify the Lagrange interpolation to deal with the situation of the interpolation nodes being counted by multiplicities, which is significant to solve the above functional equation.


2002 ◽  
Vol 7 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Mifodijus Sapagovas

Numerous and different nonlocal conditions for the solvability of parabolic equations were researched in many articles and reports. The article presented analyzes such conditions imposed, and observes that the existence and uniqueness of the solution of parabolic equation is related mainly to ”smallness” of functions, involved in nonlocal conditions. As a consequence the hypothesis has been made, stating the assumptions on functions in nonlocal conditions are related to numerical algorithms of solving parabolic equations, and not to the parabolic equation itself.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kordan N. Ospanov

AbstractWe give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solution and its derivatives. Using these estimates, we show the conditions for the compactness of some integral operators associated with the resolvent.


2021 ◽  
Vol 40 (5) ◽  
pp. 9977-9985
Author(s):  
Naeem Saleem ◽  
Hüseyin Işık ◽  
Salman Furqan ◽  
Choonkil Park

In this paper, we introduce the concept of fuzzy double controlled metric space that can be regarded as the generalization of fuzzy b-metric space, extended fuzzy b-metric space and controlled fuzzy metric space. We use two non-comparable functions α and β in the triangular inequality as: M q ( x , z , t α ( x , y ) + s β ( y , z ) ) ≥ M q ( x , y , t ) ∗ M q ( y , z , s ) . We prove Banach contraction principle in fuzzy double controlled metric space and generalize the Banach contraction principle in aforementioned spaces. We give some examples to support our main results. An application to existence and uniqueness of solution for an integral equation is also presented in this work.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document