scholarly journals Presence and distribution of oilseed pumpkin viruses and molecular detection of Zucchini yellow mosaic virus

2009 ◽  
Vol 24 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Ana Vucurovic ◽  
Aleksandra Bulajic ◽  
Ivana Djekic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

Over the past decade, intensive spread of virus infections of oilseed pumpkin has resulted in significant economic losses in pumpkin crop production, which is currently expanding in our country. In 2007 and 2008, a survey for the presence and distribution of oilseed pumpkin viruses was carried out in order to identify viruses responsible for epidemics and incidences of very destructive symptoms on cucurbit leaves and fruits. Monitoring and collecting samples of oil pumpkin, as well as other species such as winter and butternut squash and buffalo and bottle gourd with viral infection symptoms, was conducted in several localities of Vojvodina Province. The collected plant samples were tested by DAS-ELISA using polyclonal antisera specific for the detection of six most economically harmful pumpkin viruses: Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMW), Squash mosaic virus (SqMV), Papaya ringspot virus (PRSV) and Tobacco ringspot virus (TRSV) that are included in A1 quarantine list of harmful organisms in Serbia. Identification of viruses in the collected samples indicated the presence of three viruses, ZYMV, WMV and CMV, in individual and mixed infections. Frequency of the identified viruses varied depending on locality and year of investigations. In 2007, WMV was the most frequent virus (94.2%), while ZYMV was prevalent (98.04%) in 2008. High frequency of ZYMV determined in both years of investigation indicated the need for its rapid and reliable molecular detection. During this investigation, a protocol for ZYMV detection was developed and optimized using specific primers CPfwd/Cprev and commercial kits for total RNA extraction, as well as for RT-PCR. In RT-PCR reaction using these primers, a DNA fragment of approximately 1100 bp, which included coat protein gene, was amplified in the samples of infected pumkin leaves. Although serological methods are still useful for large-scale testing of a great number of samples, this protocol, due to its high sensitivity and specificity, is an important improvement in rapid diagnosis of diseases caused by this virus. In addition, the protocol provides a basis for further characterization of ZYMV isolates originating from Serbia.

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
Y.-M. Liao ◽  
X.-J. Gan ◽  
B. Chen ◽  
J.-H. Cai

Luohanguo, Siraitia grosvenorii (Swingle) C. Jeffrey, is a perennial cucurbitaceous plant that is an economically important medicinal and sweetener crop in Guangxi province, China. Surveys conducted during the summer to fall seasons of 2003-2004 in northern Guangxi showed symptoms typical of a viral disease, including leaf mottling, mosaic, vein clearing, curling, and shoestring-like distortion in the field. Mechanical inoculation of sap from leaves of symptomatic plants collected from the surveyed areas caused similar symptoms on tissue culture-derived healthy Luohanguo plants. Two sequences of 0.7 and 1.6 kb with 88 and 97% identity to Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus (ZYMV) were amplified using reverse transcription-polymerase chain reaction (RT-PCR) with purified flexuous viral particles or total RNA extracted from the symptomatic Luohanguo leaves as templates with conserved degenerate potyvirus primers (1). To confirm the results, primers specific for PRSV (PP1/PP2, genome coordinates 4064-4083/5087-5069, GenBank Accession No X97251) and ZYMV (ZP1/ZP2, genome coordinates 5540-5557/7937-7920, GenBank Accession No L31350) were used to perform RT-PCR from the same RNA templates. The expected 1.0- and 2.3-kb fragments were amplified and they were 90 and 95% identical to PRSV and ZYMV in sequence, respectively. Watermelon mosaic virus was not detected. To our knowledge, this is the first report of the occurrence of PRSV and ZYMV in Luohanguo. Reference: (1) A. Gibbs et al. J. Virol. Methods 63:9, 1997.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1361-1361 ◽  
Author(s):  
S. Jossey ◽  
M. Babadoost

During a survey of commercial pumpkin and squash fields for viruses, conducted in Illinois in 2005, Tobacco ringspot virus (TRSV) was identified for the first time in symptomatic pumpkin samples collected during August and September from Douglas, Kankakee, Piatt, and Tazewell counties in one of three, one of three, one of one, and one of seven samples tested, respectively. In an earlier study from southern Illinois, the only viruses detected in pumpkins were Cucumber mosaic virus, Papaya ringspot virus, Squash mosaic virus, Watermelon mosaic virus, and Zucchini yellow mosaic virus (2). TRSV has been reported in cucurbits from some states in the United States (1). We detected TRSV in symptomatic leaves exhibiting mild mosaic with leaf yellowing using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) kit (Agdia, Inc., Elkhart, IN). Samples were considered positive if the absorbance readings at 405 nm exceeded 3× the absorbance of the negative control. The presence of TRSV was confirmed by reverse transcription-polymerase chain reactions (RT-PCR). Total RNA was extracted from the symptomatic plants using TRIzol Reagent and reverse transcribed by M-MLV Reverse Transcriptase (Invitrogen, Carlsbad, CA). PCR was conducted using forward primer 5′-CTTGCGGCCCAAATCT ATAA-3′ and reverse primer 5′-ACTTGTGCCCAGGAGAGCTA-3′, which anneal to the conserved region in the coat protein gene. The reaction produced an amplification product of the expected size (348 bp). Hence, utilizing ELISA and RT-PCR tests, the presence of TRSV in pumpkin was determined, to our knowledge, for the first time in Illinois. References: (1) R. Provvidenti. Tobacco ringspot. Page 42 in: Compendium of Cucurbit Diseases. T. A. Zitter et al., eds. The American Phytopathological Society, St. Paul, MN. 1996. (2) S. A. Walters et al. HortScience 38:65, 2003.


1998 ◽  
Vol 8 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Jonathan R. Schultheis ◽  
S. Alan Walters

Yellow and zucchini squash (Cucurbita pepo L.) cultigens (breeding lines and cultivars) were evaluated over a 2-year (1995 and 1996) period in North Carolina. Yellow squash cultigens that performed well (based on total marketable yields) were `Destiny III', `Freedom III', `Multipik', XPHT 1815, and `Liberator III' in Fall 1995 and HMX 4716, `Superpik', PSX 391, `Monet', `Dixie', XPH 1780, and `Picasso' in Spring 1996. Some of the yellow squash cultigens evaluated had superior viral resistance: XPHT 1815, XPHT 1817, `Freedom III', `Destiny III', `Freedom II', TW 941121, `Prelude II', and `Liberator III' in Fall 1995 and XPHT 1815, `Liberator III', `Prelude II', and `Destiny III' in Fall 1996; all these cultigens were transgenic. The yellow squash cultigens that performed well (based on total marketable yields) in the Fall 1995 test had transgenic virus resistance (`Destiny III', `Freedom III', XPHT 1815, and `Liberator III') or had the Py gene present in its genetic background (`Multipik'). Based on total marketable yields, the best zucchini cultigens were XPHT 1800, `Tigress', XPHT 1814, `Dividend' (ZS 19), `Elite', and `Noblesse' in Fall 1995; and `Leonardo', `Tigress', `Hurricane', `Elite', and `Noblesse' in Spring 1996. The zucchini cultigens with virus resistance were TW 940966, XPHT 1814, and XPHT 1800 in Fall 1995 and XPHT 1800, XPHT 1776, XPHT 1777, XPHT 1814, and XPHT 1784 in Fall 1996. Even though TW 940966 had a high level of resistance in the Fall 1995 test, it was not as high yielding as some of the more susceptible lines. Viruses detected in the field were papaya ringspot virus (PRSV) and watermelon mosaic virus (WMV) for Fall 1995; while PRSV, zucchini yellow mosaic virus (ZYMV), and WMV were detected for Fall 1996. Summer squash cultigens transgenic for WMV and ZYMV have potential to improve yield, especially during the fall when viruses are more prevalent. Most transgenic cultigens do not possess resistance to PRSV, except XPHT 1815 and XPHT 1817. Papaya ringspot virus was present in the squash tests during the fall of both years. Thus, PRSV resistance must be transferred to the transgenic cultigens before summer squash can be grown during the fall season without the risk of yield loss due to viruses.


2005 ◽  
Vol 30 (4) ◽  
pp. 394-399 ◽  
Author(s):  
Lindomar M. da Silveira ◽  
Manoel A. de Queiróz ◽  
J. Albérsio de A. Lima ◽  
Maria Z. de Negreiros ◽  
Najara F. Ramos ◽  
...  

Visando selecionar acessos e progênies de melancia (Citrullus spp.) como fontes de resistência aos potyvirus: Papaya ringspot virus tipo watermelon (PRSV-W), Watermelon mosaic virus (WMV) e Zucchini yellow mosaic virus (ZYMV), oito genótipos foram avaliados, sendo seis dos acessos (87-019, 87-029, 91-080, PI-244018, 91-043 e PI-195927) e dois do acesso PI-244019 (PI-244019A e PI-244019B) do Banco Ativo de Germoplasma (BAG) de cucurbitáceas do Nordeste brasileiro, da Embrapa Semi-Árido em Petrolina-PE. Também foram avaliadas progênies endogâmicas e de polinização livre derivadas desses acessos. As avaliações foram realizadas em de casa de vegetação, mediante inoculações mecânicas, e avaliação por Elisa, no Laboratório de Virologia Vegetal da UFC. As plantas não infetadas foram selecionadas e cultivadas na Estação Experimental de Bebedouro na Embrapa Semi-Árido em Petrolina-PE, onde ocorreram inoculações naturais de vírus por vetores. Foram constatadas plantas não infetadas com o PRSV-W nos acessos 87-019, PI-244019A, 91-080, PI-244018, PI-244019B e PI-195927; plantas não infetadas com o WMV nos acessos 87-019 e 87-029 e plantas não infetadas com o ZYMV nos acessos PI-244019A, 87-029, 91-080, 91-043, PI-244019B e PI-195927. As progênies apresentaram comportamento diferenciado, com percentagem de plantas selecionadas variando de 20 a 100% nas progênies avaliadas para resistência a PRSV-W e 60 a 100% nas progênies avaliadas para resistência a WMV. Nenhuma das progênies testadas apresentou resistência ao ZYMV, evidenciando possível diferença entre a resistência ao PRSV-W e ao WMV apresentada nas progênies e a resistência apresentada ao ZYMV, visto que as progênies foram submetidas ao mesmo número de autofecundações.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 61-68 ◽  
Author(s):  
S. Jossey ◽  
M. Babadoost

Surveys were conducted during 2004 to 2006 to identify the viruses infecting pumpkin and squash in Illinois. In 2004, 16 jack-o-lantern pumpkin (Cucurbita pepo) samples and one squash (C. pepo) sample were collected from 11 counties. In 2005, 85 jack-o-lantern pumpkin, 12 processing pumpkin (Cucurbita moschata), 37 squash, and six gourd (C. pepo) samples were collected from 54 counties. In 2006, 85 jack-o-lantern pumpkin, 16 processing pumpkin, 51 squash, and 18 gourd samples were collected from 47 counties. Cucumber mosaic virus (CMV), Papaya ringspot virus (PRSV), Squash mosaic virus (SqMV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and unknown potyviruses were detected in pumpkin, squash, and gourd fields during the surveys, using enzyme-linked immunosorbent assay (ELISA). Overall, 86, 11, 75, and 79% of jack-o-lantern pumpkin, processing pumpkin, squash, and gourds, respectively, were tested positive for virus infection during the survey. WMV was detected in 47, 46, and 52% of the samples in 2004, 2005, and 2006, respectively, and was the most prevalent virus throughout the state. SqMV was detected in more counties than any other virus because it was identified in 65 and 88% of the counties surveyed in 2005 and 2006, respectively. SqMV was detected in 6, 41, and 48% of the samples in 2004, 2005, and 2006, respectively. During the surveys, CMV was detected in 6, 4, and 3% of the samples; PRSV was detected in 6, 11, and 4% of the samples; and ZYMV was detected in 18, 4, and 4% of the samples tested in 2004, 2005, and 2006, respectively. TRSV was detected in 3% of the samples in 2005, for the first time on pumpkin in Illinois. Pathogenicity of the detected viruses was proved for CMV, PRSV, SqMV, WMV, and ZYMV on summer squash (‘Fortune’ and ‘Grey Zucchini’), jack-o-lantern pumpkin (‘Howden’), and processing pumpkin (‘Dickinson’). All of the viruses were present alone and mixed in the samples tested. Earlier in the growing seasons (July and early August), single-virus infections were detected. Mixed infections were more common from the second week of August until the end of the growing season in October. Dual infection of WMV and SqMV was the most prevalent mixed virus infection detected in Illinois. Most viruses infecting pumpkin and squash showed similar symptoms. The most common symptoms observed in the commercial fields and in the greenhouse studies were light- and dark-green mosaic, veinbanding, veinclearing, puckering, and deformation of leaves of pumpkin, squash, and gourds. Severe symptoms included fernleaf and shoestring on leaves and color breaking and deformation of fruit.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 338-340 ◽  
Author(s):  
T. Wai ◽  
R. Grumet

The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses: zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). In this study we sought to determine the genetics of resistance to PRSV-W. TMG-1 was crossed with WI-2757, an inbred line susceptible to all three viruses. Segregation data indicated that resistance to PRSV-W was due to a single dominant gene (proposed designation, Prsv-2). Enzyme-linked immunosorbent assay (ELISA) data suggested that the mechanism of resistance to PRSV-W differs from that for ZYMV and WMV, and may be better described as tolerance. Although the plants were free of symptoms, high PRSV-W titers existed in young expanding leaves of the TMG-1 plants and the WI-2757 × TMG-1 F1 progeny.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 913G-914
Author(s):  
Konstantinos Anagnostou ◽  
Molly Kyle ◽  
Rafael Perl-Treves

We have studied the relationship of resistance to watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), papaya ringspot virus (PRSV), and powdery mildew (PM) in melon (Cucumis melo). We have confirmed monogenic dominant inheritance of these four resistances and report that PI414723-4S3, which was initially selected as a source of ZYMR, is also a source of dominant monogenic resistance to PRSV. Further, we observed departure from independent assortment for resistance to WMV and ZYMV in a study of 73 (UC Top Mark × PI414723-4S3) F3 families (χ2 = 39.87 significant at both 0.01 and 0.05 levels), indicating linkage between Wmv and Zym. The map distance between these resistance genes calculated from the number of recombinant families (RF% = 9.58) was 10.5 cM. Compari-sons among WMV, PM, ZYMV-PM, PRSV-PM, ZYMV-PRSV, and WMV-PRSV of 48 (TM × PI414723-4S3) F3 families, which were screened with all four pathogens, showed no consistent cosegregation.


2012 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Akhtar Ali ◽  
Osama Abdalla ◽  
Benny Bruton ◽  
Wayne Fish ◽  
Edward Sikora ◽  
...  

Field surveys were conducted to determine the distribution and frequency of viruses infecting watermelon and other cucurbits in the southern US in 2010 and 2011. Leaf samples were collected from 715 symptomatic plants from 10 states and were tested by dot-immunobinding assays or reverse transcriptionpolymerase chain reaction for 17 viruses that included Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Cucurbit aphid born yellows virus (CABYV), Cucurbit yellow stunting disorder virus (CYSDV), Cucumber green mottle mosaic virus (CGMMV), Cucumber mosaic virus (CMV), Melon necrotic spot virus (MNSV), Papaya ringspot virus-W (PRSV-W), Squash leaf curl virus (SLCuV), Soybean mosaic virus (SMV), Squash mosaic virus (SqMV), Squash vein yellowing virus (SqVYV), Tobacco ringspot virus (TRSV), Watermelon mosaic virus (WMV), Watermelon silver mottle virus (WSMoV), Zucchini yellow mosaic virus (ZYMV), and Zucchini green mottle mosaic virus (ZGMMV). Thirteen out of 17 viruses were detected in this study. The distribution of detected viruses varied with the highest average frequency for WMV (30.6%), followed by PRSV-W (24.7%), ZYMV (13.9%), TRSV (5.7%), SqMV (3.5%), and MNSV (2.6%). The percent frequency of the remaining viruses was less than 2%. Seven viruses (AMV, BPMV, CMV, SqMV, TRSV, PRSV-W, and ZYMV) were also detected either from nearby agricultural crops or weeds species. Mixed infections were also recorded for some viruses with potyviruses being the most common. There is limited information on frequency and distribution of viruses that occur on watermelon and other cucurbits. These results indicate that potyviruses, particularly PRSV-W, WMV, and ZYMV, are frequently present in infected watermelon and other cucurbits in the southern US. Accepted for publication 30 July 2012. Published 24 August 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Akhtar Ali ◽  
Osama Mohammad ◽  
Abeer Khattab

Field surveys were conducted from 2008 to 2010 to detect and determine the incidence of viruses in the major cucurbit-growing areas of Oklahoma. In total, 1,049 symptomatic leaf samples (890 from cucurbits, 109 from weed species, and 50 from crop plants [agricultural crops]) were collected from 90 fields in four counties (Atoka, Blaine, Jefferson, and Tulsa) of Oklahoma. Samples were tested against seven viruses, including Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), Melon necrotic spot virus (MNSV), Papaya ringspot virus-watermelon strain (PRSV-W, formerly known as Watermelon mosaic virus-1), Squash mosaic virus (SqMV), Watermelon mosaic virus-2 (WMV-2), and Zucchini yellow mosaic virus (ZYMV), using dot-immunobinding assay (DIBA). Results showed the highest incidence for PRSV (51%), followed by WMV-2 (14%) and ZYMV (10%) among the collected samples. SqMV, MNSV, and CMV were detected in 3.8, 3.3, and 1.1% of the samples, respectively. None of the samples collected during surveys reacted positively against the antiserum of CGMMV. Mixed virus infections were common involving two (5.18%) or three (4.61%) viruses in various combinations. New weed host species were found to be infected with PRSV when confirmed by both DIBA and reverse-transcription polymerase chain reaction (RT-PCR). Some weed species contained possible new viruses when analyzed by random RT-PCR, followed by cloning, sequencing, and BLAST analysis with sequences in GenBank.


Sign in / Sign up

Export Citation Format

Share Document