scholarly journals Behaviour of electron content in the ionospheric D-region during solar X-ray flares

2016 ◽  
pp. 11-18 ◽  
Author(s):  
M. Todorovic-Drakul ◽  
V.M. Cadez ◽  
J. Bajcetic ◽  
L.C. Popovic ◽  
D. Blagojevic ◽  
...  

One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km { 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TECD) during activity of a solar X-ray ?are (it rises by a factor of 136 in the considered case) when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Aleksandra Nina

Many analyses of the perturbed ionospheric D-region and its influence on the propagation of ground-based and satellite signals are based on data obtained in ionospheric remote sensing by very low/low frequency (VLF/LF) signals. One of the most significant causes of errors in these analyses is the lack of data related to the analysed area and time period preceding the considered perturbation. In this paper, we examine the influence of the estimation of the quiet ionosphere parameters on the determination of the electron density (Ne) and total electron content in the D-region (TECD) during the influence of a solar X-ray flare. We present a new procedure in which parameters describing the quiet ionosphere are calculated based on observations of the analysed area by a VLF/LF signal at the observed time. The developed procedure is an upgrade of the quiet ionospheric D-region (QIonDR) model that allows for a more precise analysis of the D-region intensively perturbed by a solar X-ray flare. The presented procedure is applied to data obtained in ionospheric remote sensing by the DHO signal emitted in Germany and received in Serbia during 30 solar X-ray flares. We give analytical expressions for the dependencies of the analysed parameters on the X-ray flux maximum at the times of the X-ray flux maximum and the most intense D-region perturbation. The results show that the obtained Ne and TECD are larger than in the cases when the usual constant values of the quiet ionosphere parameters are used.


2020 ◽  
Vol 38 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Telmo dos Santos Klipp ◽  
Adriano Petry ◽  
Jonas Rodrigues de Souza ◽  
Eurico Rodrigues de Paula ◽  
Gabriel Sandim Falcão ◽  
...  

Abstract. In this work, a period of 2 years (2016–2017) of ionospheric total electron content (ITEC) from ionosondes operating in Brazil is compared to the International GNSS (Global Navigation Satellite System) Service (IGS) vertical total electron content (vTEC) data. Sounding instruments from the National Institute for Space Research (INPE) provided the ionograms used, which were filtered based on confidence score (CS) and C-Level flag evaluation. Differences between vTEC from IGS maps and ionosonde TEC were accumulated in terms of root mean squared error (RMSE). As expected, we noticed that the ITEC values provided by ionosondes are systematically underestimated, which is attributed to a limitation in the electron density modeling for the ionogram topside that considers a fixed scale height, which makes density values decay too rapidly above ∼800 km, while IGS takes in account electron density from GNSS stations up to the satellite network orbits. The topside density profiles covering the plasmasphere were re-modeled using two different approaches: an optimization of the adapted α-Chapman exponential decay that includes a transition function between the F2 layer and plasmasphere and a corrected version of the NeQuick topside formulation. The electron density integration height was extended to 20 000 km to compute TEC. Chapman parameters for the F2 layer were extracted from each ionogram, and the plasmaspheric scale height was set to 10 000 km. A criterion to optimize the proportionality coefficient used to calculate the plasmaspheric basis density was introduced in this work. The NeQuick variable scale height was calculated using empirical parameters determined with data from Swarm satellites. The mean RMSE for the whole period using adapted α-Chapman optimization reached a minimum of 5.32 TECU, that is, 23 % lower than initial ITEC errors, while for the NeQuick topside formulation the error was reduced by 27 %.


1996 ◽  
Vol 8 (3) ◽  
pp. 297-302 ◽  
Author(s):  
J.A.T. Heaton ◽  
G.O.L. Jones ◽  
L. Kersley

Total electron content (TEC) measurements obtained at two Antarctic stations over nine months beginning early in 1994 have been analysed as a first step to performing ionospheric tomography. Two receiving systems were deployed at the Faraday and Halley research stations operated by the British Antarctic Survey to monitor signals from a random selection of passes of satellites in the Navy Navigational Satellite System. The resultant measurements of total electron content have been inverted and combined with ionosonde measurements of true height and foF2 to yield two-dimensional contour maps of ionospheric electron density. In spite of the poor geometry of the observations, some 130 satellite passes were found to be suitable for reconstruction using the techniques developed for ionospheric tomography. The contour maps of plasma density have been compared with independent observations of the vertical electron density profile measured by the dynasonde ionospheric sounder located at Halley. An example is presented of a deep trough investigated by the technique, illustrating the potential of the tomographic method for study of an extended spatial region of the ionosphere over inhospitable terrain.


Author(s):  
Fabricio dos Santos Prol ◽  
Mainul Hoque ◽  
Arthur Amaral Ferreira

As part of the space weather monitoring, the response of the ionosphere and plasmasphere to geomagnetic storms is typically under continuous supervision by operational services. Fortunately, Global Navigation Satellite System (GNSS) receivers on board low Earth orbit satellites provides a unique opportunity for developing image representations that can capture the global distribution of the electron density in the plasmasphere and topside ionosphere. Among the difficulties of plasmaspheric imaging based on GNSS measurements, the development of procedures to invert the Total Electron Content (TEC) into electron density distributions remains as a challenging task. In this study, a new tomographic reconstruction technique is presented to estimate the electron density from TEC data along the METOP (Meteorological Operational) satellites. The proposed method is evaluated during four geomagnetic storms to check the capabilities of the tomography for space weather monitoring. The investigation shows that the developed method can successfully capture and reconstruct well-known enhancement and decrease of electron density variabilities during storms. The comparison with in-situ electron densities has shown an improvement around 11% and a better description of plasma variabilities due to the storms compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase


2020 ◽  
Vol 38 (5) ◽  
pp. 969-981
Author(s):  
Shufan Zhao ◽  
XuHui Shen ◽  
Zeren Zhima ◽  
Chen Zhou

Abstract. Earthquakes may disturb the lower ionosphere through various coupling mechanisms during the seismogenic and coseismic periods. The VLF (very low-frequency) signal radiated from ground-based transmitters will be affected when it penetrates the disturbed ionosphere above the epicenter area, and this anomaly can be recorded by low-Earth orbit satellites under certain conditions. In this paper, the temporal and spatial variation of the signal-to-noise ratio (SNR) of the VLF transmitter signal in the ionosphere over the epicenter of 2010 Yushu Ms 7.1 earthquake in China is analyzed using DEMETER (Detection of Electro-Magnetic Emission Transmitted from Earthquake Regions) satellite observation. The results show that SNR over the epicenter of the Yushu earthquake especially in the southwestern region decreased (or dropped) before the main shock, and a GPS–TEC (Global Positioning System; total electron content) anomaly accompanied, which implies that the decrease in SNR might be caused by the enhancement of TEC. A full-wave method is used to study the mechanism of the change in SNR before the earthquake. The simulated results show SNR does not always decrease before an earthquake. When the electron density in the lower ionosphere increases by 3 times, the electric field will decrease about 2 dB, indicating that the disturbed-electric-field decrease of 20 % compared with the original electric field and vice versa. It can be concluded that the variation of electron density before earthquakes may be one of the important factors influencing the variation of SNR.


2020 ◽  
Vol 633 ◽  
pp. A77 ◽  
Author(s):  
J. G. Albert ◽  
M. S. S. L. Oei ◽  
R. J. van Weeren ◽  
H. T. Intema ◽  
H. J. A. Röttgering

Calibrating for direction-dependent ionospheric distortions in visibility data is one of the main technical challenges that must be overcome to advance low-frequency radio astronomy. In this paper, we propose a novel probabilistic, tomographic approach that utilises Gaussian processes to calibrate direction-dependent ionospheric phase distortions in low-frequency interferometric data. We suggest that the ionospheric free electron density can be modelled to good approximation by a Gaussian process restricted to a thick single layer, and show that under this assumption the differential total electron content must also be a Gaussian process. We perform a comparison with a number of other widely successful Gaussian processes on simulated differential total electron contents over a wide range of experimental conditions, and find that, in all experimental conditions, our model is better able to represent observed data and generalise to unseen data. The mean equivalent source shift imposed by our predictive errors are half as large as those of the best competitor model. We find that it is possible to partially constrain the hyperparameters of the ionosphere from sparse-and-noisy observed data. Our model provides an alternative explanation for observed phase structure functions deviating from Kolmogorov’s five-thirds turbulence, turnover at high baselines, and diffractive scale anisotropy. We show that our model performs tomography of the free electron density both implicitly and cheaply. Moreover, we find that even a fast, low-resolution approximation of our model yields better results than the best alternative Gaussian process, implying that the geometric coupling between directions and antennae is a powerful prior that should not be ignored.


2016 ◽  
Vol 34 (11) ◽  
pp. 999-1010 ◽  
Author(s):  
David Minkwitz ◽  
Karl Gerald van den Boogaart ◽  
Tatjana Gerzen ◽  
Mainul Hoque ◽  
Manuel Hernández-Pajares

Abstract. The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial–temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial–temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.


2021 ◽  
Vol 13 (13) ◽  
pp. 2609
Author(s):  
Aleksandra Nina ◽  
Jelena Radović ◽  
Giovanni Nico ◽  
Luka Č. Popović ◽  
Milan Radovanović ◽  
...  

In this work, we study the impact of high-energy radiation induced by solar X-ray flares on the determination of the temporal change in precipitable water vapor (ΔPWV) as estimated using the synthetic aperture radar (SAR) meteorology technique. As recent research shows, this radiation can significantly affect the ionospheric D-region and induces errors in the estimation of the total electron content (TEC) by the applied models. Consequently, these errors are reflected in the determination of the phase delay and in many different types of measurements and models, including calculations of meteorological parameters based on SAR observations. The goal of this study is to quantify the impact of solar X-ray flares on the estimation of ΔPWV and provide an estimate of errors induced if the vertical total electron content (VTEC) is obtained by single layer models (SLM) or multiple layer models (MLM) (these models do not include ionosphere properties below the altitude of 90 km as input parameters and cannot provide information about local disturbances in the D-region). The performed analysis is based on a known procedure for the determination of the D-region electron density (and, consequently, the vertical total electron content in the D-region (VTECD)) using ionospheric observations of very low frequency (VLF) radio waves. The main result indicates that if the D-region, perturbed by medium-sized and intense X-ray flares, is not modeled, errors occur in the determination of ΔPWV. This study emphasizes the need for improved MLMs for the estimation of the TEC, including observational data at D-region altitudes during medium-sized and intense X-ray flare events.


2021 ◽  
Author(s):  
Florian Zus ◽  
Jens Wickert

<p>We developed a rapid and precise algorithm to compute Higher-Order Ionospheric Corrections (HOIC) utilizing realistic electron density fields. The electron density field is derived from the International Reference Ionosphere (IRI) and the required magnetic field is the International Geomagnetic Reference Field (IGRF). Direct application of such HOICs is regarded impractical due to the large data volume to be handled. Therefore, we developed a parameterized version; for any location near the Earth's surface (grid with a resolution of 2.5° times 5°) a set of HOICs are computed (various elevation and azimuth angles) and the coefficients of a polynomial expansion (Zernike polynomials) are stored in a look-up-table. These look-up-tables cover the time period 1990-2019 and are available via FTP (ftp://ftp.gfz-potsdam.de/pub/home/GNSS/products/gfz-hoic/). We call this parameterized version GFZ-HOIC. A scalable version utilizing GNSS Total Electron Content (TEC) maps is under construction. A version available for real time applications is foreseen. With such accurate and easy-to-use HOICs available we performed extensive impact studies. For example, we examine how HOIC leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in Precise Point Positioning (PPP). The study includes a few hundred globally distributed stations and covers the time period 1990-2019. The PPP simulation shows the known significant systematic impact of HOICs on the estimated station y-coordinates and the estimated north-gradient components. In addition, the PPP simulation reveals the significant systematic impact of HOICs on the estimated zenith delays. This impact is not caused by higher-order terms in the formula for the refractive index of the ionosphere. This impact is caused by the ray-path bending effects. These ray-path bending effects are automatically taken into account thanks to the ray-tracing algorithm that is used in the derivation of the HOICs. In conclusion, GFZ-HOICs are both highly accurate and easy-to-use so that we can recommend them for practical applications.</p>


Sign in / Sign up

Export Citation Format

Share Document