scholarly journals Power signal disturbance classification using wavelet based neural network

2007 ◽  
Vol 4 (1) ◽  
pp. 71-83 ◽  
Author(s):  
S. Suja ◽  
Jovitha Jerome

In this paper, the power signal disturbances are detected using discrete wavelet transform (DWT) and categorized using neural networks. This paper presents a prototype of power quality disturbance recognition system. The prototype contains three main components. First a simulator is used to generate power signal disturbances. The second component is a detector which uses the technique of DWT to detect the power signal disturbances. DWT is used to extract disturbance features in the power signal. These coefficients obtained from DWT are further subjected to statistical manipulations for increasing the detection accuracy. The third component is neural network architecture to classify the power signal disturbances with increased accuracy of detection.

2017 ◽  
Vol 25 (2) ◽  
pp. 205-217
Author(s):  
S. Suja ◽  
Jovitha Jerome

In this paper, the power signal disturbances are detected using discrete wavelet transform (DWT) and categorized using neural networks. This paper presents a prototype of power quality disturbance recognition system. The prototype contains three main components. First a simulator is used to generate power signal disturbances. The second component is a detector which uses the technique of DWT to detect the power signal disturbances. DWT is used to extract disturbance features in the power signal. The third component is neural network architecture to classify the power signal disturbances.    


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2020 ◽  
Author(s):  
Douglas Meneghetti ◽  
Reinaldo Bianchi

This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting. The proposed network uses directed labeled graph representations for states, encodes feature vectors of different sizes for different entity classes, uses relational graph convolution layers to model different communication channels between entity types and learns distinct policies for different agent classes, sharing parameters wherever possible. Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


2021 ◽  
Vol 7 (9) ◽  
pp. 173
Author(s):  
Eduardo Paluzo-Hidalgo ◽  
Rocio Gonzalez-Diaz ◽  
Miguel A. Gutiérrez-Naranjo ◽  
Jónathan Heras

Simplicial-map neural networks are a recent neural network architecture induced by simplicial maps defined between simplicial complexes. It has been proved that simplicial-map neural networks are universal approximators and that they can be refined to be robust to adversarial attacks. In this paper, the refinement toward robustness is optimized by reducing the number of simplices (i.e., nodes) needed. We have shown experimentally that such a refined neural network is equivalent to the original network as a classification tool but requires much less storage.


2018 ◽  
Author(s):  
Sutedi Sutedi

Diabetes Melitus (DM) is dangerous disease that affect many of the variouslayer of work society. This disease is not easy to accurately recognized by thegeneral society. So we need to develop a system that can identify accurately. Systemis built using neural networks with backpropagation methods and the functionactivation sigmoid. Neural network architecture using 8 input layer, 2 output layerand 5 hidden layer. The results show that this methods succesfully clasifies datadiabetics and non diabetics with near 100% accuracy rate.


In this paper we will identify a cry signals of infants and the explanation behind the screams below 0-6 months of segment age. Detection of baby cry signals is essential for the pre-processing of various applications involving crial analysis for baby caregivers, such as emotion detection. Since cry signals hold baby well-being information and can be understood to an extent by experienced parents and experts. We train and validate the neural network architecture for baby cry detection and also test the fastAI with the neural network. Trained neural networks will provide a model and this model can predict the reason behind the cry sound. Only the cry sounds are recognized, and alert the user automatically. Created a web application by responding and detecting different emotions including hunger, tired, discomfort, bellypain.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4403
Author(s):  
Umme Hafsa Billah ◽  
Hung Manh La ◽  
Alireza Tavakkoli

An autonomous concrete crack inspection system is necessary for preventing hazardous incidents arising from deteriorated concrete surfaces. In this paper, we present a concrete crack detection framework to aid the process of automated inspection. The proposed approach employs a deep convolutional neural network architecture for crack segmentation, while addressing the effect of gradient vanishing problem. A feature silencing module is incorporated in the proposed framework, capable of eliminating non-discriminative feature maps from the network to improve performance. Experimental results support the benefit of incorporating feature silencing within a convolutional neural network architecture for improving the network’s robustness, sensitivity, and specificity. An added benefit of the proposed architecture is its ability to accommodate for the trade-off between specificity (positive class detection accuracy) and sensitivity (negative class detection accuracy) with respect to the target application. Furthermore, the proposed framework achieves a high precision rate and processing time than the state-of-the-art crack detection architectures.


Sign in / Sign up

Export Citation Format

Share Document