scholarly journals New multi-soliton solutions for generalized Burgers-Huxley equation

2013 ◽  
Vol 17 (5) ◽  
pp. 1486-1489 ◽  
Author(s):  
Jun Liu ◽  
Hong-Ying Luo ◽  
Gui Mu ◽  
Zhengde Dai ◽  
Xi Liu

The double exp-function method is used to obtain a two-soliton solution of the generalized Burgers-Huxley equation. The wave has two different velocities and two different frequencies.

2013 ◽  
Vol 22 (02) ◽  
pp. 1350015 ◽  
Author(s):  
AHMET BEKIR ◽  
ESIN AKSOY ◽  
ÖZKAN GÜNER

This paper, studies the long-short-wave interaction (LS) equation. An optical soliton solution is obtained by the exp-function method and the ansatz method. Subsequently, we formally derive the dark (topological) soliton solutions for this equation. By using the exp-function method, some additional solutions will be derived. The physical parameters in the soliton solutions of ansatz method: amplitude, inverse width, and velocity are obtained as functions of the dependent model coefficients.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Wenxia Chen ◽  
Danping Ding ◽  
Xiaoyan Deng ◽  
Gang Xu

The evolution process of four class soliton solutions is investigated by basic calculus theory. For any given x, we describe the special curvature evolution following time t for the curve of soliton solution and also study the fluctuation of solution curve.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
Vol 35 (13) ◽  
pp. 2150168
Author(s):  
Adel Darwish ◽  
Aly R. Seadawy ◽  
Hamdy M. Ahmed ◽  
A. L. Elbably ◽  
Mohammed F. Shehab ◽  
...  

In this paper, we use the improved modified extended tanh-function method to obtain exact solutions for the nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. With the aid of this method, we get many exact solutions like bright and singular solitons, rational, singular periodic, hyperbolic, Jacobi elliptic function and exponential solutions. Moreover, the two-dimensional and the three-dimensional graphs of some solutions are plotted for knowing the physical interpretation.


2021 ◽  
pp. 2150277
Author(s):  
Hongcai Ma ◽  
Qiaoxin Cheng ◽  
Aiping Deng

[Formula: see text]-soliton solutions are derived for a (3 + 1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation by using bilinear transformation. Some local waves such as period soliton, line soliton, lump soliton and their interaction are constructed by selecting specific parameters on the multi-soliton solutions. By selecting special constraints on the two soliton solutions, period and lump soliton solution can be obtained; three solitons can reduce to the interaction solution between period soliton and line soliton or lump soliton and line soliton under special parameters; the interaction solution among period soliton and two line solitons, or the interaction solution for two period solitons or two lump solitons via taking specific constraints from four soliton solutions. Finally, some images of the results are drawn, and their dynamic behavior is analyzed.


2014 ◽  
Vol 19 (2) ◽  
pp. 209-224
Author(s):  
Mustafa Inc ◽  
Eda Fendoglu ◽  
Houria Triki ◽  
Anjan Biswas

This paper presents the Drinfel’d–Sokolov system (shortly D(m, n)) in a detailed fashion. The Jacobi’s elliptic function method is employed to extract the cnoidal and snoidal wave solutions. The compacton and solitary pattern solutions are also retrieved. The ansatz method is applied to extract the topological 1-soliton solutions of the D(m, n) with generalized evolution. There are a couple of constraint conditions that will fall out in order to exist the topological soliton solutions.


2009 ◽  
Vol 23 (14) ◽  
pp. 1771-1780 ◽  
Author(s):  
CHUN-TE LEE ◽  
JINN-LIANG LIU ◽  
CHUN-CHE LEE ◽  
YAW-HONG KANG

This paper presents both the theoretical and numerical explanations for the existence of a two-soliton solution for a second-order Korteweg-de Vries (KdV) equation. Our results show that there exists "quasi-soliton" solutions for the equation in which solitary waves almost retain their identities in a suitable physical regime after they interact, and bear a close resemblance to the pure KdV solitons.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Temesgen Desta Leta ◽  
Wenjun Liu ◽  
Hadi Rezazadeh ◽  
Jian Ding ◽  
Abdelfattah El Achab

2012 ◽  
Vol 26 (07) ◽  
pp. 1250062 ◽  
Author(s):  
XIAO-LING GAI ◽  
YI-TIAN GAO ◽  
XIN YU ◽  
ZHI-YUAN SUN

Generalized (3+1)-dimensional Boussinesq equation is investigated in this paper. Through the dependent variable transformation and symbolic computation, the one- and two-soliton solutions are obtained. With the one-soliton solution, the coefficient effects in the soliton propagation process are investigated. Through analyzing the two-soliton solution, two kinds of two-soliton interactions are presented: (i) Two solitons merge into a bigger one whose amplitude increases but does not exceed the sum of the two at the moment of the collision; (ii) Two solitons can pass through each other, and their shapes keep unchanged with a phase shift after the separation. In addition, two kinds of analytic solutions are discussed: (i) "Amplitudes" of the two analytic solutions immediately turn to negative (positive) infinity after the "collision"; (ii) Two analytic solutions are fused into a higher peak (valley) at the moment of "collision", whose "amplitudes" change to negative (positive) infinity after the separation.


Sign in / Sign up

Export Citation Format

Share Document