scholarly journals Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

2017 ◽  
Vol 21 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Mayank Singhal ◽  
Gaurav Singhal ◽  
Avinash Verma ◽  
Sushil Kumar ◽  
Manmohan Singh

An infrared (IR) detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ?, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

The application of thermal methods to the study of steady-state combustion is described. Such methods provide a route to information on heat transfer and chemical kinetics which forms a basis for the implementation of numerical models. The experimental results from thermal analysis and temperature profile analysis have been examined within the context of a simple pseudo one-dimensional model of propagation offering some confirmation of the validity of the approach.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3714 ◽  
Author(s):  
Mohamed Mubarak ◽  
Othman Sidek ◽  
Mohamed Abdel-Rahman ◽  
Mohd Mustaffa ◽  
Ahmad Mustapa Kamal ◽  
...  

Since the 1940s, infrared (IR) detection and imaging at wavelengths in the two atmospheric windows of 3 to 5 and 8 to 14 μm has been extensively researched. Through several generations, these detectors have undergone considerable developments and have found use in various applications in different fields including military, space science, medicine and engineering. For the most recently proposed generation, these detectors are required to achieve high-speed detection with spectral and polarization selectivity while operating at room temperature. Antenna coupled IR detectors appear to be the most promising candidate to achieve these requirements and has received substantial attention from research in recent years. This paper sets out to present a review of the antenna coupled IR detector family, to explore the main concepts behind the detectors as well as outline their critical and challenging design considerations. In this context, the design of both elements, the antenna and the sensor, will be presented individually followed by the challenging techniques in the impedance matching between both elements. Some hands-on fabrication techniques will then be explored. Finally, a discussion on the coupled IR detector is presented with the aim of providing some useful insights into promising future work.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


2020 ◽  
Vol 28 (2) ◽  
pp. 1-7
Author(s):  
Rouhollah Basirat ◽  
Jafar Khademi Hamidi

AbstractUnderstanding the brittleness of rock has a crucial importance in rock engineering applications such as the mechanical excavation of rock. In this study, numerical modeling of a punch penetration test is performed using the Discrete Element Method (DEM). The Peak Strength Index (PSI) as a function of the brittleness index was calculated using the axial load and a penetration graph obtained from numerical models. In the first step, the numerical model was verified by experimental results. The results obtained from the numerical modeling showed a good agreement with those obtained from the experimental tests. The propagation path was also simulated using Voronoi meshing. The fracture was created under the indenter in the first step, and then radial fractures were propagated. The effects of confining pressure and strength parameters on the PSI were subsequently investigated. The numerical results showed that the PSI increases with enhancing the confining pressure and the strength parameter of the rock, including cohesion and the friction angle. A new relationship between the strength parameters and PSI was also introduced based on two variable regressions of the numerical results.


2004 ◽  
Vol 241 (12) ◽  
pp. 2681-2684 ◽  
Author(s):  
Tae Hee Lee ◽  
Lan Kim ◽  
Woong Joon Hwang ◽  
C. C. Lee ◽  
Moo Whan Shin

Author(s):  
Anahita Emami ◽  
Seyedmeysam Khaleghian ◽  
Chuang Su ◽  
Saied Taheri

Good understanding of friction in tire-road interaction is of critical importance for vehicle dynamic control systems. Most of the friction models proposed to describe the friction coefficient between tire-treads and road surfaces have been developed based on empirical or semi-empirical relations that are not able to include many effective parameters involved in the tire-road interactions. Therefore, these models are just useful in limited conditions similar to the experiments, and do not accurately represent tire-road traction in numerical tire models. However, in last two decades, a few theoretical models have been developed to calculate the tire-road friction coefficient theoretically by considering both viscoelastic behavior of tire tread compounds and multi-scale interactions between tire treads and rough road surfaces. In this article, a novel physics-based model proposed by Persson has been investigated and used to develop computer algorithms for calculation of sliding friction coefficient between a tire tread compound and a rough substrate. The viscoelastic behavior of tread compound and the surface profile of rough counter surface are the inputs of this physics-based theoretical model. The numerical results of the model have been compared with the experimental results obtained from a dynamic friction tester designed and built in the Center for Tire Research (CenTire). Good agreement between numerical results of theoretical model and experimental results has been found at intermediate range of slip velocities considering the effect of adhesion and shearing in the real contact area in addition to hysteresis friction due to internal energy dissipation in the tire tread compound.


2001 ◽  
Author(s):  
Hayden M. Reeve ◽  
Ann M. Mescher ◽  
Ashley F. Emery

Abstract The transient heating of a polymer preform within a cylindrical furnace is the initial step in the manufacture of polymer optical fiber. A numerical model was used to simulate the radiative and convective heat transfer within the furnace enclosure during this initial heating. Results illustrate a strong dependence of the preform’s heating rate on the radiative properties of the preform. Due to the prominence of radiative heat transfer at steady-state, the resulting axial temperature profile within the preform is strongly coupled to the corresponding axial temperature profile of the furnace wall. Numerical predictions were compared with experimental results for several preform surface emissivities, preform diameters, and thermal boundary conditions. The results compare well for preforms with well-characterized surface finishes (such as black paint and aluminum), with discrepancies between experimental and numerical results typically less than 1.3°C. Experiments indicate that the heating characteristics of poly(methyl methacrylate) preforms can be adequately simulated by assuming that the preform exhibits nearly blackbody behavior (ε = 0.96) when exposed to the low furnace temperatures (85°C) used in this study. Finally, the experiments revealed the tendency for unstable natural convection within tall furnace cavities, with experimental readings indicating oscillatory air temperatures as the system approached steady-state.


Sign in / Sign up

Export Citation Format

Share Document