scholarly journals Numerical investigation of nucleate pool boiling heat transfer

2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1301-1312
Author(s):  
Andrijana Stojanovic ◽  
Vladimir Stevanovic ◽  
Milan Petrovic ◽  
Dragoljub Zivkovic

Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase.

2017 ◽  
Vol 39 (17-18) ◽  
pp. 1498-1506 ◽  
Author(s):  
Ke Wang ◽  
Shengjie Gong ◽  
Bofeng Bai ◽  
Weimin Ma

1999 ◽  
Vol 121 (2) ◽  
pp. 376-385 ◽  
Author(s):  
S.-S. Hsieh ◽  
C.-J. Weng ◽  
J.-J. Chiou

Nucleate pool boiling correlation was developed for five different rib-type roughened tube geometries (including plain tube) with different rib angles of 30 deg, 45 deg, 60 deg, and 90 deg for both distilled water and R-134a as the working media. A scanning electron micrograph (SEM) examination was made for these horizontal roughened tubes. Bubble departure diameter, frequency of bubble emission, and the active nucleation site density with the influence of the rib angle for this type of roughened surface were obtained. Boiling heat flux incorporating natural convection, nucleate boiling, and microlayer evaporation mechanisms following Benjamin and Balakrishnan (1996) was predicted. Heat transfer correlation was also developed in terms of the degree superheat and active nucleation site density. The dependence for these two parameters was found in favorable agreement with that of previous study for smooth surfaces.


Author(s):  
Jia-Qi Li ◽  
Li-Wu Fan ◽  
Liang Zhang ◽  
Zi-Tao Yu

Quenching experiments were performed with hot stainless steel spheres in a pool of water-based nanofluids in the presence of carbon nanotubes (CNTs) of various sizes. In order to explore the size effect, a test matrix was developed by choosing multi-walled CNTs with lengths from 1 μm to 5 μm and outer diameters from 30 nm to 60 nm. The concentration was fixed at 0.5% by mass for all types of CNTs. The initial temperature was 400 °C and the transient temperature variations at the center of the sphere were recorded as quenching curves. By establishing a lumped capacitance model, the transient surface heat flux variations were obtained as boiling curves. The original and boiled surfaces were both subjected to a series of characterizations to determine the changes in morphology, roughness, and wettability to identify the effects of CNT size on the surface properties of the formed deposition layers as well as to elucidate the mechanisms for regulation of the boiling and quenching behaviors. The results suggested that the critical heat flux (CHF) and the Leidenfrost point (LFP) are enhanced to various degrees due to the discrepancy in the size of the CNTs in nanofluids. It was shown that the CNTs deposited on the surfaces create various morphologies depending on their size. The CNTs with a length of 5 μm and a diameter of 60 nm exhibited the most significant effect on the boiling behaviors. In comparison to CNTs with a shorter length of 1 μm, the 5 μm long CNTs were much easier to form porous layers. The results of the contact angle and roughness tests showed that the porous layers tend to affect the surface roughness instead of surface wettability. The increases of the nucleation site density and surface roughness due to the presence of porous layers were identified as the primary cause for the modified boiling behaviors during quenching.


Author(s):  
Yusen Qi ◽  
James F. Klausner

It has been well established that the rate of heat transfer associated with boiling systems is strongly dependent on the nucleation site density. Over many years attempts have been made to predict nucleation site density in boiling systems using a variety of techniques. With the exception of specially prepared surfaces, these attempts have met with little success. This paper presents an experimental investigation of nucleation site density measured on roughly polished brass and stainless steel surfaces for gas nucleation and pool boiling over a large parameter space. The fluids used for this study, distilled water and ethanol, are moderately wetting and highly wetting, respectively. Using distilled water it has been observed that the trends of nucleation site density versus the inverse of the critical radius are similar for pool boiling and gas nucleation. The nucleation site density is higher for gas nucleation than for pool boiling. An unexpected result has been observed with ethanol as the heat transfer fluid, which casts doubt on the general validity of heterogeneous nucleation theory. Due to flooding, few sites are active on the brass surface and at most two are active on the stainless steel surface during gas nucleation experiments. However, nucleation sites readily form in large concentration on both the brass and stainless steel surfaces during pool boiling. The nucleation site densities for the rough and mirror polished brass surfaces are also compared. It shows that there is no large difference for the measured nucleation site density.


Author(s):  
Matevž Zupančič ◽  
Jure Voglar ◽  
Peter Gregorčič ◽  
Iztok Golobič ◽  
Peter Zakšek

Pool boiling experiments of water and ethanol-water binary mixtures were conducted on smooth and laser textured stainless steel foils. High-speed IR thermography was used to measure transient temperature field during boiling in order to determine nucleation frequencies, nucleation site densities, bubble activation temperatures, wall-temperature distributions and average superheats as well as heat transfer coefficients. Saturated pool boiling experiments were conducted at atmospheric pressure over a heat flux range of 5–250 kW m−2 for pure water and ethanol-water mixtures (1% and 10% m/m). For both mixtures and both types of surfaces we measured significant decrease in average heat transfer coefficient and increase in bubble activation temperatures in comparison to pure water. However, laser textured surface in average provided around 60% higher nucleation frequency and more than 100% higher nucleation site density compared to smooth surface for both of the tested binary mixtures. Consequentially, heat transfer coefficient was enhanced for more than 30%. Our results show that laser textured surfaces can improve boiling performance for water and ethanol-water mixtures, but at the same time the addition of ethanol reduces heat transfer coefficient despite the enhancement of nucleation site density and nucleation frequency. This is also in agreement with available experimental data and existing theoretical models.


1979 ◽  
Vol 101 (4) ◽  
pp. 603-611 ◽  
Author(s):  
H. Tanaka

The high rates of heat transfer of dropwise condensation as well as its limits are explained on the basis of the behaviors of submicroscopic active drops. The expression for the substantial growth rate of a single drop valid down to the thermodynamic critical size is incorporated into a set of basic equations from [8] whose capability to describe the process of coalescence and growth of drops in dropwise condensation has been demonstrated in [9]. Consideration of the nondimensionalized forms of the basic equations with the aid of numerical analysis results in an expression of the Nusselt number for dropwise condensation in terms of a few characteristic parameters. Comparison of the predicted Nusselt numbers with available experimental data suggests that the condensation coefficient of water is around 0.2 provided the nucleation site density is infinitely high. Otherwise, if the condensation coefficient should be unity, we have to accept that the nucleation sites are fairly scattered.


2005 ◽  
Vol 128 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yusen Qi ◽  
James F. Klausner

It has been well established that the rate of heat transfer associated with boiling systems is strongly dependent on the nucleation site density. Over many years attempts have been made to predict nucleation site density in boiling systems using a variety of techniques. With the exception of specially prepared surfaces, these attempts have met with little success. This paper presents an experimental investigation of nucleation site density measured on roughly polished brass and stainless steel surfaces for gas nucleation and pool boiling over a large parameter space. A statistical model used to predict the nucleation site density in saturated pool boiling is also investigated. The fluids used for this study, distilled water and ethanol, are moderately wetting and highly wetting, respectively. Using distilled water it has been observed that the trends of nucleation site density versus the inverse of the critical radius are similar for pool boiling and gas nucleation. The nucleation site density is higher for gas nucleation than for pool boiling. An unexpected result has been observed with ethanol as the heat transfer fluid, which casts doubt on the general assumption that heterogeneous nucleation in boiling systems is exclusively seeded by vapor trapping cavities. Due to flooding, few sites are active on the brass surface and at most two are active on the stainless steel surface during gas nucleation experiments. However, nucleation sites readily form in large concentration on both the brass and stainless steel surfaces during pool boiling. The pool boiling nucleation site densities for ethanol on rough and mirror polished brass surfaces are also compared. It shows that there is not a significant difference between the measured nucleation site densities on the smooth and rough surfaces. These results suggest that, in addition to vapor trapping cavities, another mechanism must exist to seed vapor bubble growth in boiling systems.


Sign in / Sign up

Export Citation Format

Share Document