nucleation site density
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012068
Author(s):  
A N Chernyavskiy ◽  
I P Malakhov

Abstract Visual analysis allows an estimate of different local boiling characteristics including bubble growth rate, departure diameters and frequencies of nucleation, nucleation site density and evolution of bubbles and dry spots in time. At the same time, visual determination of the presented characteristics in case of big amounts of data requires the development of the appropriate software which will allow not only determination of bubble location, but also an estimate of their sizes based on high-speed video. The presented problem can be solved by using the instance segmentation approach based on a convolutional neural network. In the presented work Mask R-CNN network architecture was used for estimation of the local boiling characteristics.


2019 ◽  
Vol 316 ◽  
pp. 105-112
Author(s):  
Sheng Shen ◽  
Xiaoyue Zhang ◽  
Syed Mubeen ◽  
Manuel P. Soriaga ◽  
John L. Stickney

2019 ◽  
Vol 196 ◽  
pp. 00054 ◽  
Author(s):  
Anton Surtaev ◽  
Vladimir Serdyukov ◽  
Alexey Safonov

The paper presents the results of an experimental study of the effect of hydrophobic fluoropolymer coating on the multiscale characteristics of heat transfer at water boiling. New experimental data on dynamics of vapor bubble growth and detachment, evolution of contact line, nucleation site density, heat transfer coefficient were obtained using high-speed imaging techniques, including infrared thermography and video recording from the bottom side of transparent ITO heater. It was shown, that the using of hydrophobic fluoropolymer coating leads to heat transfer enhancement, to decrease of the superheat temperature at the onset of boiling, to increase of the active nucleation site density and to significant change in the dynamics of growth and departure of vapor bubbles and the evolution of the triple contact line.


Author(s):  
Matevž Zupančič ◽  
Jure Voglar ◽  
Peter Gregorčič ◽  
Iztok Golobič ◽  
Peter Zakšek

Pool boiling experiments of water and ethanol-water binary mixtures were conducted on smooth and laser textured stainless steel foils. High-speed IR thermography was used to measure transient temperature field during boiling in order to determine nucleation frequencies, nucleation site densities, bubble activation temperatures, wall-temperature distributions and average superheats as well as heat transfer coefficients. Saturated pool boiling experiments were conducted at atmospheric pressure over a heat flux range of 5–250 kW m−2 for pure water and ethanol-water mixtures (1% and 10% m/m). For both mixtures and both types of surfaces we measured significant decrease in average heat transfer coefficient and increase in bubble activation temperatures in comparison to pure water. However, laser textured surface in average provided around 60% higher nucleation frequency and more than 100% higher nucleation site density compared to smooth surface for both of the tested binary mixtures. Consequentially, heat transfer coefficient was enhanced for more than 30%. Our results show that laser textured surfaces can improve boiling performance for water and ethanol-water mixtures, but at the same time the addition of ethanol reduces heat transfer coefficient despite the enhancement of nucleation site density and nucleation frequency. This is also in agreement with available experimental data and existing theoretical models.


2018 ◽  
Vol 328 ◽  
pp. 1-9 ◽  
Author(s):  
Quan Li ◽  
Yongjun Jiao ◽  
Maria Avramova ◽  
Ping Chen ◽  
Junchong Yu ◽  
...  

2017 ◽  
Vol 39 (17-18) ◽  
pp. 1498-1506 ◽  
Author(s):  
Ke Wang ◽  
Shengjie Gong ◽  
Bofeng Bai ◽  
Weimin Ma

Author(s):  
Jia-Qi Li ◽  
Li-Wu Fan ◽  
Liang Zhang ◽  
Zi-Tao Yu

Quenching experiments were performed with hot stainless steel spheres in a pool of water-based nanofluids in the presence of carbon nanotubes (CNTs) of various sizes. In order to explore the size effect, a test matrix was developed by choosing multi-walled CNTs with lengths from 1 μm to 5 μm and outer diameters from 30 nm to 60 nm. The concentration was fixed at 0.5% by mass for all types of CNTs. The initial temperature was 400 °C and the transient temperature variations at the center of the sphere were recorded as quenching curves. By establishing a lumped capacitance model, the transient surface heat flux variations were obtained as boiling curves. The original and boiled surfaces were both subjected to a series of characterizations to determine the changes in morphology, roughness, and wettability to identify the effects of CNT size on the surface properties of the formed deposition layers as well as to elucidate the mechanisms for regulation of the boiling and quenching behaviors. The results suggested that the critical heat flux (CHF) and the Leidenfrost point (LFP) are enhanced to various degrees due to the discrepancy in the size of the CNTs in nanofluids. It was shown that the CNTs deposited on the surfaces create various morphologies depending on their size. The CNTs with a length of 5 μm and a diameter of 60 nm exhibited the most significant effect on the boiling behaviors. In comparison to CNTs with a shorter length of 1 μm, the 5 μm long CNTs were much easier to form porous layers. The results of the contact angle and roughness tests showed that the porous layers tend to affect the surface roughness instead of surface wettability. The increases of the nucleation site density and surface roughness due to the presence of porous layers were identified as the primary cause for the modified boiling behaviors during quenching.


Sign in / Sign up

Export Citation Format

Share Document