scholarly journals New Approximate Analytical Solutions of the Falkner-Skan Equation

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Beong In Yun

We propose an iterative method for solving the Falkner-Skan equation. The method provides approximate analytical solutions which consist of coefficients of the previous iterate solution. By some examples, we show that the presented method with a small number of iterations is competitive with the existing method such as Adomian decomposition method. Furthermore, to improve the accuracy of the proposed method, we suggest an efficient correction method. In practice, for some examples one can observe that the correction method results in highly improved approximate solutions.

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 837-841 ◽  
Author(s):  
Shuxian Deng

Consider the non-linear local fractional heat equation. The fractional complex transform method and the Adomian decomposition method are used to solve the equation. The approximate analytical solutions are obtained.


2020 ◽  
pp. 2655-2662
Author(s):  
Firas S. Ahmed

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hassan Eltayeb ◽  
Imed Bachar ◽  
Yahya T. Abdalla

Abstract In this study, the double Laplace Adomian decomposition method and the triple Laplace Adomian decomposition method are employed to solve one- and two-dimensional time-fractional Navier–Stokes problems, respectively. In order to examine the applicability of these methods some examples are provided. The presented results confirm that the proposed methods are very effective in the search of exact and approximate solutions for the problems. Numerical simulation is used to sketch the exact and approximate solution.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 138
Author(s):  
Alyaa A. Al-Qarni ◽  
Huda O. Bakodah ◽  
Aisha A. Alshaery ◽  
Anjan Biswas ◽  
Yakup Yıldırım ◽  
...  

The current manuscript displays elegant numerical results for cubic-quartic optical solitons associated with the perturbed Fokas–Lenells equations. To do so, we devise a generalized iterative method for the model using the improved Adomian decomposition method (ADM) and further seek validation from certain well-known results in the literature. As proven, the proposed scheme is efficient and possess a high level of accuracy.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Sachin Bhalekar ◽  
Varsha Daftardar-Gejji

A new iterative method introduced by Daftardar-Gejji and Jafari (2006) (DJ Method) is an efficient technique to solve nonlinear functional equations. In the present paper, sufficiency conditions for convergence of DJM have been presented. Further equivalence of DJM and Adomian decomposition method is established.


2019 ◽  
Vol 24 (1) ◽  
pp. 7 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Asmaa Al-Enazi ◽  
Bassam Z. Albalawi ◽  
Mona D. Aljoufi

The Ambartsumian delay equation is used in the theory of surface brightness in the Milky way. The Adomian decomposition method (ADM) is applied in this paper to solve this equation. Two canonical forms are implemented to obtain two types of the approximate solutions. The first solution is provided in the form of a power series which agrees with the solution in the literature, while the second expresses the solution in terms of exponential functions which is viewed as a new solution. A rapid rate of convergence has been achieved and displayed in several graphs. Furthermore, only a few terms of the new approximate solution (expressed in terms of exponential functions) are sufficient to achieve extremely accurate numerical results when compared with a large number of terms of the first solution in the literature. In addition, the residual error using a few terms approaches zero as the delay parameter increases, hence, this confirms the effectiveness of the present approach over the solution in the literature.


Author(s):  
Hossein Jafari

In this paper, we apply two decomposition methods, the Adomian decomposition method (ADM) and a well-established iterative method, to solve time-fractional Klein–Gordon type equation. We compare these methods and discuss the convergence of them. The obtained results reveal that these methods are very accurate and effective.


Sign in / Sign up

Export Citation Format

Share Document