scholarly journals Impact of arrhenius activation energy in viscoelastic nanomaterial flow subject to binary chemical reaction and non-linear mixed convection

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1143-1155
Author(s):  
Salman Ahmad ◽  
Khan Ijaz ◽  
Ahmed Waleed ◽  
Tufail Khan ◽  
Tasawar Hayat ◽  
...  

The computational investigations on mixed convection stagnation point flow of Jeffrey nanofluid over a stretched surface is presented herein. The sheet is placed vertical over which nanomaterials flowing upward direction. Arrhenius activation energy and binary chemical reaction are accounted. Non-linear radiative heat flux, MHD, viscous dissipation, heat source/sink, and Joule heating are considered. Initially the non-linear flow expressions are converted to ordinary one and then tackled for series solutions by homotopy analysis method. Consider flow problem are discussed for velocity, temperature and concentration through various flow variables. Furthermore, skin friction coefficient, Sherwood number, and heat transfer rate are computed graphically.

2020 ◽  
Vol 7 (3) ◽  
pp. 279-286
Author(s):  
M Ijaz Khan ◽  
Tehreem Nasir ◽  
T Hayat ◽  
Niaz B Khan ◽  
A Alsaedi

Abstract Time-dependent rotating flow in presence of heat source/sink, applied magnetic field, Joule heating, thermal radiation, and viscous dissipation is considered. Chemical reaction with Arrhenius activation energy is implemented. The governing partial differential equations have been reduced to ordinary differential systems. Shooting scheme is implemented for the computations of governing systems. Graphical results are arranged for velocity, temperature, and concentration, skin friction coefficients, and heat and mass transfer rates. Main results are mentioned in conclusion portion. It is analyzed that velocity decays in the presence of magnetic variable while temperature and concentration fields are enhanced via Eckert number and fitted rate constant. Moreover drag force and mass and heat transfer rates decrease through higher estimations of rotation rate variable, magnetic parameter, and Eckert number.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 495-506 ◽  
Author(s):  
Oluwole Makinde ◽  
Fazle Mabood ◽  
Mohammed Ibrahim

In this paper, steady 2-D MHD free convective boundary-layer flows of an electrically conducting nanofluid over a non-linear stretching sheet taking into account the chemical reaction and heat source/sink are investigated. The governing equations are transformed into a system of non-linear ODE using suitable similarity transformations. Analytical solution for the dimensionless velocity, temperature, concentration, skin friction coefficient, heat and mass transfer rates are obtained by using homotopy analysis method. The obtained results show that the flow field is substantially influenced by the presence of chemical reaction, radiation, and magnetic field.


2019 ◽  
Vol 15 (1) ◽  
pp. 227-245 ◽  
Author(s):  
Gireesha B.J. ◽  
M. Archana ◽  
B. Mahanthesh ◽  
Prasannakumara B.C.

PurposeThe purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.Design/methodology/approachA similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.FindingsThe effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.Originality/valueThe problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.


2019 ◽  
Vol 8 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Bhuvnesh Sharma ◽  
Sunil Kumar ◽  
M.K. Paswan

Abstract A rigorous analysis of unsteady magnetohydrodynamic mixed convection and electrically conducting nanofluid model with a stretching/shrinking wedge is presented. First, the governing partial differential equations for momentum and energy conservation are converted to coupled nonlinear ordinary differential equations by means of exact similarity transformation. The homotopy analysis method (HAM) is employed to obtain the analytical approximations for flow velocity and temperature distributions of alumina-sodium alginate naofluid. The solution is found to be dependent on some parameters including the nanoparticle volume fraction, unsteadiness parameter, magnetic parameter, mixed convection parameter and the generalized prandtl number. A systematic study is carried out to illustrate the effects of these parameters on the velocity and temperature distributions. Also, the value of skin friction coefficient and local Nusselt number are compared with copper-sodium alginate and titania-sodium alginate nanofluids.


2020 ◽  
Vol 19 (03) ◽  
pp. 2040006 ◽  
Author(s):  
M. Ijaz Khan ◽  
Faris Alzahrani

This paper deals with the entropy optimization and heat transport of magneto-nanomaterial flow of non-Newtonian (Jeffrey fluid) towards a curved stretched surface. MHD fluid is accounted. The modeling of energy expression is developed subject to Brownian diffusion, Joule (Ohmic) heating, thermophoresis and viscous dissipation. Total entropy rate is discussed with the help of fluid friction irreversibility, mass transfer irreversibility, Joule heating irreversibility and heat transfer irreversibility. Binary chemical reaction with the smallest amount of activation energy is further considered. The governing equations of Jeffrey fluid with effects of hydrodynamic, thermal radiation, heat and mass transfer were solved through built-in-shooting method. The flow variables on the entropy rate, velocity field, concentration, Bejan number, skin friction coefficient and temperature are physically discussed through various graphs. The outcomes reveal that the entropy rate increases with an enhancement in curvature parameter. Such obtained outcomes help in mechanical and industrial engineering sciences. Moreover, the velocity and temperature decays versus ratio of relaxation to retardation times are also noticed.


Sign in / Sign up

Export Citation Format

Share Document