scholarly journals Results of the modernization of the electrostatic precipitator at unit B1 of the Thermal Power Plant Kostolac B

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1623-1634
Author(s):  
Milic Eric ◽  
Predrag Stefanovic ◽  
Zoran Markovic ◽  
Rastko Jovanovic ◽  
Ivan Lazovic ◽  
...  

The electrostatic precipitator system of the lignite fired 350 MWe unit B1 of Thermal Power Plant Kostolac B has been modernized during 2014. The results of complex in site measurements, performed in the frame of performance control test at the beginning of the exploitation period of the upgraded electrostatic precipitator proved that, under normal and guarantee working conditions of the boiler and precipitator, the emission of particulate matter do not exceed limiting value. After the period of precipitator further adjustments, five series of measurements in the frame of acceptance test were performed in accordance with relevant standards. This paper presents results of the investigation of particulate matter concentration, laboratory analysis of the lignite, fly and bottom ash samples, working parameters of the unit and upgraded electrostatic precipitator as well as results of the calculations. The averaged mean particulate concentration at the exit of upgraded electrostatic precipitator of the unit B1 during Acceptance test was below guaranteed value. It is confirmed that adjustments of electrostatic precipitator electrical parameters have improved electrostatic precipitator efficiency, as well that electrostatic precipitator could work highly efficiently in energy save mode with lower power consumption.

2013 ◽  
Vol 594-595 ◽  
pp. 527-531
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin ◽  
Ahmad Faiz Abdul Rashid

Millions tons of coal ash which constitute of fly ash and bottom ash were produced annually throughout the world. They were significant to be developed as masonry brick to substitute the existing widely used traditional material such as clay and sand brick which were produced from depleting and dwindling natural resources. In the present study, the coal ash from coal-fired thermal power plant was used as the main raw material for the fabrication of cementless unfired lightweight brick. The binder comprising of Hydrated Lime (HL)-activated Ground Granulated Blastfurnace Slag (GGBS) system at binding ratio 30:70, 50:50 and 70:30 were used to stabilize the coal ash in the fabrication process of the brick. Foam was used to lightweight the brick. The compressive strength and ambient density were evaluated on the brick. The results indicated that the brick incorporating HL-GGBS system achieved higher strength of 20.84N/mm2 at 28 days compare to the HL system with strength of 13.98N/mm2 at 28 days. However, as the quantity of foam increase at 0%, 25%, 50%, 75% and 100%, the strength and density for the brick decreased.


Author(s):  
Sivakumar Naganathan ◽  
Salmia Beddu ◽  
Muhammad Zulfiqar Ajmulkhan ◽  
Jegatheish Kanadasan ◽  
Zakaria Che Muda ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 1935-1939
Author(s):  
Jian Yi Lv ◽  
Li Yuan Cao ◽  
Ya Tao

This paper elaborates the formation, distribution, migration and transformation of mercury and particulate matter, also some of the existing removal process methods. Using the mass balance method calculates the mercury content of coal-fired product. According to the result, we can targeted design a strong practicality, feasibility joint removal process to fine particulate matter and mercury of the thermal power plant.


2021 ◽  
Vol 347 ◽  
pp. 00011
Author(s):  
Alton Marx ◽  
Pieter Rousseau ◽  
Ryno Laubscher

The development of deep learning methodologies for the analysis of thermal power plant load losses requires a combination of real plant data and data derived from fundamental physics-based process models. For this purpose, a robust integrated power plant thermofluid process model of a complete +600MW coal-fired power plant was developed within the Flownex Simulation Environment. It consists of standard and compound components, combined with specially developed scripts to ensure complete energy balance, specifically on the two-phase tank components. This enables simulation of the complete plant operation to determine power output as a function of any given set of internal and external operational variables, boundary conditions and component states. The model was validated against real plant design and acceptance test data. In order to demonstrate the ability of the model it was used to evaluate the plant performance related to three specific load loss inducing scenarios. The results show that a combination of mechanical faults, process anomalies and operational phenomena can be analysed. This provides the basis for generating model-based performance data that can be combined with real plant data to facilitate the development of deep learning analytics tools for load loss fault diagnosis and root cause analysis, as well as fault propagation and load loss forecasting.


2015 ◽  
Vol 65 (318) ◽  
pp. e051 ◽  
Author(s):  
E. López-López ◽  
Á. Vega-Zamanillo ◽  
M. Á. Calzada-Pérez ◽  
M. A. Taborga-Sedano

2020 ◽  
Vol 740 ◽  
pp. 140205 ◽  
Author(s):  
Jong-Hwan Park ◽  
Ju-Hyun Eom ◽  
Su-Lim Lee ◽  
Se-Wook Hwang ◽  
Seong-Heon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document