scholarly journals Enhancement on the thermal behavior using heat pipe arrays in battery thermal management compared to cooper rods

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3329-3336
Author(s):  
Chaoyi Wan

In the present study, the thermal behavior of a power battery cooling structure employing copper rods, and heat pipes was compared. The influences of flow rate and inlet temperature of coolant, as well as input power were discussed by numerical methods. The numerical computation results showed that heat pipe could significantly augment the heat transfer of the battery cooling system than the copper rod. Within the scope of this study, the heat pipe reduced the maximum temperature by 41.6-60.9%. The distributions of temperature ratios on the battery surface, together with the heat flux as soon as streamlines around the heat pipe condenser was also illustrated.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Yiding Cao ◽  
Jian Ling

With a substantially increased gas inlet temperature in modern gas turbines, the cooling of turbine disks is becoming a challenging task. In order to reduce the temperature at the disk rim, a new turbine disk incorporating radially rotating heat pipes has been proposed. The objective of this paper is to conduct a numerical investigation for the cooling effectiveness of the rotating heat pipe. One of the major tasks of this paper is to compare the performance between a proposed disk-blade assembly incorporating radially rotating heat pipes and a conventional disk-blade assembly without the heat pipes under the same heating and cooling conditions. The numerical investigation illustrates that the turbine disk cooling technique incorporating radially rotating heat pipes is feasible. The maximum temperature at the rim of the proposed disk can be reduced by more than 100 °C in comparison with that of a conventional disk without heat pipes. However, the average temperature at the blade airfoil surface can be reduced by only about 10 °C. In addition, both the heat pipe length and diameter have an important effect on the turbine disk cooling. Under the permission of material strength, a longer heat pipe or a larger heat pipe diameter will produce a lower temperature at the disk rim.


Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 135-148
Author(s):  
Mohammad Alipour ◽  
Aliakbar Hassanpouryouzband ◽  
Riza Kizilel

This paper proposes a novel He-based cooling system for the Li-ion batteries (LIBs) used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed system offers a novel alternative battery thermal management system with promising properties in terms of safety, simplicity, and efficiency. A 3D multilayer coupled electrochemical-thermal model is used to simulate the thermal behavior of the 20 Ah LiFePO4 (LFP) cells. Based on the results, He gas, compared to air, effectively diminishes the maximum temperature rise and temperature gradient on the cell surface and offers a viable option for the thermal management of Li-ion batteries. For instance, in comparison with air, He gas offers 1.18 and 2.29 °C better cooling at flow rates of 2.5 and 7.5 L/min, respectively. The cooling design is optimized in terms of the battery’s temperature uniformity and the battery’s maximum temperature. In this regard, the effects of various parameters such as inlet diameter, flow direction, and inlet flow rate are investigated. The inlet flow rate has a more evident influence on the cooling efficiency than inlet/outlet diameter and flow direction. The possibility of using helium as a cooling fluid is shown to open new doors in the subject matter of an effective battery thermal management system.


Author(s):  
Jianping Cheng ◽  
Shenlong Shuai ◽  
Renchen Zhao ◽  
Zhiguo Tang

Abstract An effective battery thermal management system (BTMS) is essential for controlling both the maximum temperature and the temperature uniformity of a battery module. In this study, a novel and lightweight BTMS for prismatic batteries based on a heat pipe is proposed. A numerical model is created to study the influence of heat transfer designs and other factors on the thermal performance of the BTMS, and the simulation results are checked experimentally. The results show that when the condensation section of the heat pipe is cooled by liquid, the maximum temperature of the battery (Tmax) is reduced by 18.1% compared with air cooling. Decreasing the coolant temperature can reduce T_max, but can also lead to an undesirable temperature nonuniformity. The T_max and the maximum temperature difference (ΔTmax) in a battery module both increase rapidly as the discharge rate rises. The Tmax and ΔTmax are lower than 40 °C and 5 °C respectively when the discharge rate of the battery is lower than 2C. Under preheating conditions in cold weather, increasing the temperature of the heating medium can improve the temperature of the batteries, but at the same time it can make the battery module's temperature more nonuniform, and also add to cost. The temperature of the heating medium should therefore be selected with care. It could be concluded that the above results can provide perspectives in designing and optimizing battery thermal management system.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 696
Author(s):  
Ye Liu ◽  
Tao Jiang ◽  
Yanping Zheng ◽  
Jie Tian ◽  
Zheshu Ma

Based on the study of the relationship between micro and macro parameters in the actual microstructure of the electrodes, a new multi-scale multi-field coupling model of battery monomer is established and the heat generation rate of the battery is obtained by detailed numerical simulation. According to the parameters of a certain electric vehicle and battery selected, the structure of the power battery pack and heat pipe cooling system is designed. Through multi-field coupling computational fluid dynamics simulation, the temperature difference of the battery pack is gained. By changing the fin spacing, the cooling scheme of the heat pipe is optimized, which ensures that the temperature difference is less than 5 K and the maximum temperature of the battery system is 306.26 K. It is found that increasing the discharge rate, the temperature difference increases rapidly. Increasing the air inlet velocity can improve the thermal uniformity of the battery pack, but changing the air inlet temperature only determines the range of temperature, it cannot improve the thermal uniformity. The method proposed and results gained can provide a reference for the research of heat management systems with heat pipe of lithium-ion power battery pack for vehicles.


Author(s):  
Hamidreza Behi ◽  
Danial Karimi ◽  
Foad Heidari Gandoman ◽  
Mohsen Akbarzadeh ◽  
Sahar Khaleghi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document