scholarly journals Finger and foot tapping sensor system for objective motor assessment

2018 ◽  
Vol 75 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Milica Djuric-Jovicic ◽  
Nenad Jovicic ◽  
Sasa Radovanovic ◽  
Milica Jecmenica-Lukic ◽  
Minja Belic ◽  
...  

Background/Aim. Finger tapping test is commonly used in neurological examinations as a test of motor performance. The new system comprising inertial and force sensors and custom proprietary software was developed for quantitative estimation and assessment of finger and foot tapping tests. The aim of this system was to provide diagnosis support and objective assessment of motor function. Methods. Miniature inertial sensors were placed on fingertips and used for measuring finger movements. A force sensor was placed on the fingertip of one finger, in order to measure the force during tapping. For foot tapping assessment, an inertial sensor was mounted on the subject?s foot, which was placed above a force platform. By using this system, various parameters such as a number of taps, tapping duration, rhythm, open and close speed, the applied force and tapping angle, can be extracted for detailed analysis of a patient?s motor performance. The system was tested on 13 patients with Parkinson?s disease and 14 healthy controls. Results. The system allowed easy measurement of listed parameters, and additional graphical representation showed quantitative differences in these parameters between neurological patient and healthy subjects. Conclusion. The novel system for finger and foot tapping test is compact, simple to use and efficiently collects patient data. Parameters measured in patients can be compared to those measured in healthy subjects, or among groups of patients, or used to monitor progress of the disease, or therapy effects. Created data and scores could be used together with the scores from clinical tests, providing the possibility for better insight into the diagnosis.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3186
Author(s):  
Luca Molinaro ◽  
Juri Taborri ◽  
Massimo Montecchiani ◽  
Stefano Rossi

This study aimed at assessing physical performance of elite karatekas and non-karatekas. More specifically, effects of kumite and kata technique on joint mobility, body stability, and jumping ability were assessed by enrolling twenty-four karatekas and by comparing the results with 18 non-karatekas healthy subjects. Sensor system was composed by a single inertial sensor and optical bars. Karatekas are generally characterized by better motor performance with respect non-karatekas, considering all the examined factors, i.e., mobility, stability, and jumping. In addition, the two techniques lead to a differentiation in joint mobility; in particular, kumite athletes are characterized by a greater shoulder extension and, in general, by a greater value of preferred velocity to perform joint movements. Conversely, kata athletes are characterized by a greater mobility of the ankle joint. By focusing on jumping skills, kata technique leads to an increase of the concentric phase when performing squat jump. Finally, kata athletes showed better stability in closed eyes condition. The outcomes reported here can be useful for optimizing coaching programs for both beginners and karatekas based on the specific selected technique.


2016 ◽  
Vol 2 (1) ◽  
pp. 715-718 ◽  
Author(s):  
David Graurock ◽  
Thomas Schauer ◽  
Thomas Seel

AbstractInertial sensor networks enable realtime gait analysis for a multitude of applications. The usability of inertial measurement units (IMUs), however, is limited by several restrictions, e.g. a fixed and known sensor placement. To enhance the usability of inertial sensor networks in every-day live, we propose a method that automatically determines which sensor is attached to which segment of the lower limbs. The presented method exhibits a low computational workload, and it uses only the raw IMU data of 3 s of walking. Analyzing data from over 500 trials with healthy subjects and Parkinson’s patients yields a correct-pairing success rate of 99.8% after 3 s and 100% after 5 s.


Author(s):  
PJ Mulcahey ◽  
PT Knott ◽  
A Madiraju ◽  
N Haque ◽  
DS Haoson ◽  
...  

To develop a protocol for assessing spinal range of motion using an inertial sensor device. The baseline error of an inertial sensor was assessed using a bicycle wheel. Nineteen healthy subjects (12 females and 7 males, average age 18.2 ± 0.6 years) were then prospectively enrolled in a study to assess the reliability of an inertial sensor-based method for assessing spinal motion. Three raters each took three measurements of subjects’ flexion/extension, right and left bending, and right and left rotation. Afterwards, one trial from each set of measurements was excluded. Correlations and the ICC (3,1) were used to assess intra-rater reliability, and ICC (3,2) was used to assess inter-rater reliability of the protocol. The baseline error of the sensor was 1.45°. Correlation and ICC (3,1) values for the protocol all exceeded 0.888, indicating high intra-rater reliability. ICC (3,2) values for the protocol exceed 0.87, indicating high inter-rater reliability. Our study presents both a paradigm for assessing the baseline error of inertial sensors and a protocol for assessing motion of the spine using an inertial sensing device.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ive Weygers ◽  
Manon Kok ◽  
Thomas Seel ◽  
Darshan Shah ◽  
Orçun Taylan ◽  
...  

AbstractSkin-attached inertial sensors are increasingly used for kinematic analysis. However, their ability to measure outside-lab can only be exploited after correctly aligning the sensor axes with the underlying anatomical axes. Emerging model-based inertial-sensor-to-bone alignment methods relate inertial measurements with a model of the joint to overcome calibration movements and sensor placement assumptions. It is unclear how good such alignment methods can identify the anatomical axes. Any misalignment results in kinematic cross-talk errors, which makes model validation and the interpretation of the resulting kinematics measurements challenging. This study provides an anatomically correct ground-truth reference dataset from dynamic motions on a cadaver. In contrast with existing references, this enables a true model evaluation that overcomes influences from soft-tissue artifacts, orientation and manual palpation errors. This dataset comprises extensive dynamic movements that are recorded with multimodal measurements including trajectories of optical and virtual (via computed tomography) anatomical markers, reference kinematics, inertial measurements, transformation matrices and visualization tools. The dataset can be used either as a ground-truth reference or to advance research in inertial-sensor-to-bone-alignment.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4033
Author(s):  
Peng Ren ◽  
Fatemeh Elyasi ◽  
Roberto Manduchi

Pedestrian tracking systems implemented in regular smartphones may provide a convenient mechanism for wayfinding and backtracking for people who are blind. However, virtually all existing studies only considered sighted participants, whose gait pattern may be different from that of blind walkers using a long cane or a dog guide. In this contribution, we present a comparative assessment of several algorithms using inertial sensors for pedestrian tracking, as applied to data from WeAllWalk, the only published inertial sensor dataset collected indoors from blind walkers. We consider two situations of interest. In the first situation, a map of the building is not available, in which case we assume that users walk in a network of corridors intersecting at 45° or 90°. We propose a new two-stage turn detector that, combined with an LSTM-based step counter, can robustly reconstruct the path traversed. We compare this with RoNIN, a state-of-the-art algorithm based on deep learning. In the second situation, a map is available, which provides a strong prior on the possible trajectories. For these situations, we experiment with particle filtering, with an additional clustering stage based on mean shift. Our results highlight the importance of training and testing inertial odometry systems for assisted navigation with data from blind walkers.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5167
Author(s):  
Nicky Baker ◽  
Claire Gough ◽  
Susan J. Gordon

Compared to laboratory equipment inertial sensors are inexpensive and portable, permitting the measurement of postural sway and balance to be conducted in any setting. This systematic review investigated the inter-sensor and test-retest reliability, and concurrent and discriminant validity to measure static and dynamic balance in healthy adults. Medline, PubMed, Embase, Scopus, CINAHL, and Web of Science were searched to January 2021. Nineteen studies met the inclusion criteria. Meta-analysis was possible for reliability studies only and it was found that inertial sensors are reliable to measure static standing eyes open. A synthesis of the included studies shows moderate to good reliability for dynamic balance. Concurrent validity is moderate for both static and dynamic balance. Sensors discriminate old from young adults by amplitude of mediolateral sway, gait velocity, step length, and turn speed. Fallers are discriminated from non-fallers by sensor measures during walking, stepping, and sit to stand. The accuracy of discrimination is unable to be determined conclusively. Using inertial sensors to measure postural sway in healthy adults provides real-time data collected in the natural environment and enables discrimination between fallers and non-fallers. The ability of inertial sensors to identify differences in postural sway components related to altered performance in clinical tests can inform targeted interventions for the prevention of falls and near falls.


10.2196/13961 ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. e13961
Author(s):  
Kim Sarah Sczuka ◽  
Lars Schwickert ◽  
Clemens Becker ◽  
Jochen Klenk

Background Falls are a common health problem, which in the worst cases can lead to death. To develop reliable fall detection algorithms as well as suitable prevention interventions, it is important to understand circumstances and characteristics of real-world fall events. Although falls are common, they are seldom observed, and reports are often biased. Wearable inertial sensors provide an objective approach to capture real-world fall signals. However, it is difficult to directly derive visualization and interpretation of body movements from the fall signals, and corresponding video data is rarely available. Objective The re-enactment method uses available information from inertial sensors to simulate fall events, replicate the data, validate the simulation, and thereby enable a more precise description of the fall event. The aim of this paper is to describe this method and demonstrate the validity of the re-enactment approach. Methods Real-world fall data, measured by inertial sensors attached to the lower back, were selected from the Fall Repository for the Design of Smart and Self-Adaptive Environments Prolonging Independent Living (FARSEEING) database. We focused on well-described fall events such as stumbling to be re-enacted under safe conditions in a laboratory setting. For the purposes of exemplification, we selected the acceleration signal of one fall event to establish a detailed simulation protocol based on identified postures and trunk movement sequences. The subsequent re-enactment experiments were recorded with comparable inertial sensor configurations as well as synchronized video cameras to analyze the movement behavior in detail. The re-enacted sensor signals were then compared with the real-world signals to adapt the protocol and repeat the re-enactment method if necessary. The similarity between the simulated and the real-world fall signals was analyzed with a dynamic time warping algorithm, which enables the comparison of two temporal sequences varying in speed and timing. Results A fall example from the FARSEEING database was used to show the feasibility of producing a similar sensor signal with the re-enactment method. Although fall events were heterogeneous concerning chronological sequence and curve progression, it was possible to reproduce a good approximation of the motion of a person’s center of mass during fall events based on the available sensor information. Conclusions Re-enactment is a promising method to understand and visualize the biomechanics of inertial sensor-recorded real-world falls when performed in a suitable setup, especially if video data is not available.


2013 ◽  
Vol 117 (1188) ◽  
pp. 111-132 ◽  
Author(s):  
T. L. Grigorie ◽  
R. M. Botez

Abstract This paper presents a new adaptive algorithm for the statistical filtering of miniaturised inertial sensor noise. The algorithm uses the minimum variance method to perform a best estimate calculation of the accelerations or angular speeds on each of the three axes of an Inertial Measurement Unit (IMU) by using the information from some accelerometers and gyros arrays placed along the IMU axes. Also, the proposed algorithm allows the reduction of both components of the sensors’ noise (long term and short term) by using redundant linear configurations for the sensors dispositions. A numerical simulation is performed to illustrate how the algorithm works, using an accelerometer sensor model and a four-sensor array (unbiased and with different noise densities). Three cases of ideal input acceleration are considered: 1) a null signal; 2) a step signal with a no-null time step; and 3) a low frequency sinusoidal signal. To experimentally validate the proposed algorithm, some bench tests are performed. In this way, two sensors configurations are used: 1) one accelerometers array with four miniaturised sensors (n = 4); and 2) one accelerometers array with nine miniaturised sensors (n = 9). Each of the two configurations are tested for three cases of input accelerations: 0ms−1, 9·80655m/s2 and 9·80655m/s2.


Sign in / Sign up

Export Citation Format

Share Document