scholarly journals Immune response to heat shock protein of Helicobacter pylori -a candidate as a vaccine component

2002 ◽  
Vol 51 (supplement2) ◽  
pp. 24-25 ◽  
Author(s):  
Shigeru Kamiya ◽  
Takako Osaki ◽  
Haruhiko Taguchi ◽  
Hiroyuki Yamaguchi
2000 ◽  
Vol 68 (6) ◽  
pp. 3448-3454 ◽  
Author(s):  
Hiroyuki Yamaguchi ◽  
Takako Osaki ◽  
Masanori Kai ◽  
Haruhiko Taguchi ◽  
Shigeru Kamiya

ABSTRACT We previously established a monoclonal antibody (MAb), designated H9, which reacts with the heat shock protein 60 (HSP60) homologue ofHelicobacter pylori as well as with other bacterial and human HSP60s. To determine the importance of a cross-reactive epitope on H. pylori HSP60 in H. pyloriimmunopathogenesis, we performed (i) mapping of an epitope on H. pylori HSP60 recognized by the H9 MAb, (ii) analysis of immunoglobulin G responses of patients with or without H. pylori infection to its epitope region, and (iii) studies of the protective effect of immunization with its epitope region onH. pylori infection in mice. The epitope recognized by the H9 MAb was mapped to the sequence of amino acids 189 to 203 (VEGMQFDRGYLSPYF) on the H. pylori HSP60 molecule. It was confirmed that the synthesized peptide designated pH9 was recognized by the H9 MAb. Enzyme-linked immunosorbent assay analysis showed that patients with H. pylori infection (n = 349) had significantly lower titers of pH9 antibody than did uninfected patients (n = 200) (P < 0.001), but this was not the case with purified H. pylori HSP60 recombinant Escherichia coli GroEL, or recombinant human HSP60. In C57BL/6 mice immunized with the pH9 peptide with Freund's complete adjuvant (FCA), the number of H. pylori organisms colonizing the stomach was significantly lower than that in mice immunized with pCont plus FCA (P < 0.0001) or FCA only (P < 0.005). The results suggest that the immune response to the cross-reactive epitope (pH9 region) on H. pylori HSP60 is unique and might be associated with protection against H. pylori infection.


2004 ◽  
Vol 11 (5) ◽  
pp. 983-985 ◽  
Author(s):  
Peter P. Eamranond ◽  
Javier Torres ◽  
Onofre Muñoz ◽  
Guillermo I. Pérez-Pérez

ABSTRACT The immune response to heat shock protein A (HspA) in Helicobacter pylori-positive adults increases with age in developed countries. This response has not been studied with children or in developing countries (G. I. Pérez-Pérez, J. M. Thiberge, A. Labigne, and M. J. Blaser, J. Infect. Dis. 174:1046-1050, 1996). As determined by using a specific enzyme-linked immunosorbent assay, HspA seropositivity among 592 individuals in Mexico was <10% in children and increased to >40% in adults.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liping Tao ◽  
Hai Zou ◽  
Zhimin Huang

Infection ofHelicobacter pylori (H. pylori)changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70). However, the effects ofH. pylorion the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation.Objective.To investigate the effects ofHelicobacter pylori (H. pylori)and heat shock protein 70 (HSP70) on the proliferation of human gastric epithelial cells.Methods. H. pyloriand a human gastric epithelial cell line (AGS) were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA) to investigate the role of HSP70. ThesiRNA-treated AGS cells were cocultured withH. pyloriand cell proliferation was measured by an MTT assay.Results.The proliferation of AGS cells was accelerated by coculturing withH. pylorifor 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected byH. pylorifor 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing withH. pylorifor 24 and 48 h compared with the control group.Conclusions.Coculture ofH. pylorialtered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect ofH. pylorion proliferation of epithelial cells. These results indicate that the effects ofH. pylorion the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.


2006 ◽  
Vol 297 (1-2) ◽  
pp. 9-19 ◽  
Author(s):  
Shibnath Mazumdar ◽  
Shalmoli Bhattacharyya ◽  
Sujata Ghosh ◽  
Siddhartha Majumdar ◽  
Nirmal K. Ganguly

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1015 ◽  
Author(s):  
Shuangming Yue ◽  
Zhisheng Wang ◽  
Lizhi Wang ◽  
Quanhui Peng ◽  
Bai Xue

Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.


Sign in / Sign up

Export Citation Format

Share Document