Dorosoma cepedianum: NatureServe & Daniels, A.

Author(s):  
Keyword(s):  
2011 ◽  
Vol 27 (4) ◽  
pp. 287-297 ◽  
Author(s):  
Walt Godwin ◽  
Michael Coveney ◽  
Edgar Lowe ◽  
Lawrence Battoe

The tapeta lucida of three species of teleosts were examined to determine the composition of the reflecting material. The fishes were bay anchovy Anchoa mitchilli (Engraulidae), gizzard shad Dorosoma cepedianum (Clupeidae) and pigfish Orthopristes chrysopterus (Haemulidae). The tapetum of each species was situated in the pigment epithelium of the eye. That of the pigfish contained triglycerides identified as chiefly glyceryl tridocosahexaenoate. A reduced pteridine, 7, 8-dihydroxanthopterin, occurred in the tapetum of the gizzard shad. Guanine occurred in the tapetum of the bay anchovy. The tapetum of the shad contained brightly reflecting particles about 0.5 μm in diameter There were 10.8 mg of dihydroxanthopterin in the tapetum of a shad (total body length 23 cm) and 0.46 mg of guanine in the tapetum of an anchovy (total body length 9 cm). This is the first report of a pteridine acting as a retinal reflector in vertebrates. Various aspects of retinal reflectors of teleosts are discussed and their variety and common characteristics commented upon.


2000 ◽  
Vol 57 (6) ◽  
pp. 1113-1119 ◽  
Author(s):  
James C Smoot ◽  
Robert H Findlay

Measuring digestive enzyme and surfactant activities tested specialization of gizzard shad (Dorosoma cepedianum) digestive physiology to a detritivorous feeding strategy. Digestive enzyme activity was measured in adult and larval gizzard shad using fluorescently labeled artificial substrates. Surfactant activity in gizzard shad was measured by comparing gut juice drop diameters over a range of dilutions. Enzyme activity in the ceca region of adult gizzard shad was high for esterase, beta-glucosidase, lipase, and protease. Enzyme activity was lower in posterior intestine sections than in anterior intestine sections, although protease activity remained high for the greatest distance in the intestine. Micelles were detected in adult gizzard shad gut juice, and surfactant activity was greatest in the ceca region. Larval gizzard shad protease activity was similar to that of adult fish, and surfactants were below their critical micelle concentration. Gizzard shad coupled digestive physiology with gut anatomy to obtain nutrients from detritus, and these adaptations may explain elevated growth rates observed in these fish when they are planktivorous.


1996 ◽  
Vol 15 (10) ◽  
pp. 1752-1759 ◽  
Author(s):  
Alan S. Kolok ◽  
James N. Huckins ◽  
Jimmie D. Petty ◽  
James T. Oris

<em>Abstract.</em>—We describe a methodology for developing species–habitat models using available fish and stream habitat data from New York State, focusing on the Genesee basin. Electrofishing data from the New York Department of Environmental Conservation were standardized and used for model development and testing. Four types of predictive models (multiple linear regression, stepwise multiple linear regression, linear discriminant analysis, and neural network) were developed and compared for 11 fish species. Predictive models used as many as 25 habitat variables and explained 35–91% of observed species abundance variability. Omission rates were generally low, but commission rates varied widely. Neural network models performed best for all species, except for rainbow trout <em>Oncorhynchus mykiss</em>, gizzard shad <em>Dorosoma cepedianum</em>, and brown trout <em>Salmo trutta</em>. Linear discriminant functions generally performed poorly. The species–environment models we constructed performed well and have potential applications to management issues.


1986 ◽  
Vol 43 (10) ◽  
pp. 1935-1945 ◽  
Author(s):  
Ray W. Drenner ◽  
Stephen T. Threlkeld ◽  
Michael D. McCracken

In laboratory trials, feeding rates of an omnivorous filter-feeding clupeid, Dorosoma cepedianum, increased as a function of particle size, with maximal rates on microspheres, spherical algae, and Zooplankton >40 μm; it did not efficiently feed on filamentous Anabaena flos-aquae. To examine the community level impacts of Dorosoma, we conducted four seasonal outdoor tank experiments of cross-classified design involving two or three densities of Dorosoma and two densities of the zooplanktivorous atherinid fish, Menidia beryllina. We attempted to discriminate between the direct and indirect effects of Dorosoma on phytoplankton by using Menidia to produce indirect effects on phytoplankton by suppressing Zooplankton. Experiments began in November, March, June, and September and lasted for 45–53 d. Dorosoma suppressed most Zooplankton in at least one experiment and enhanced algal standing crops in all four experiments, as indicated by increased algal chlorophyll fluorescence, turbidity, Coulter counts and microscopic algal counts, and decreased Secchi depths. Because in three out of four experiments Menidia suppressed Zooplankton biomass to a greater extent than Dorosoma without enhancing phytoplankton, we reject the hypothesis that the enhancement of phytoplankton by Dorosoma was an indirect effect of Zooplankton biomass suppression.


Copeia ◽  
1981 ◽  
Vol 1981 (4) ◽  
pp. 908 ◽  
Author(s):  
J. Michael Fitzsimons ◽  
Albert J. Doucette
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document