On the Existence and Application of Continuous-Time Threshold Autoregressions of Order Two

1997 ◽  
Vol 29 (1) ◽  
pp. 205-227 ◽  
Author(s):  
P. J. Brockwell ◽  
R. J. Williams

A continuous-time threshold autoregressive process of order two (CTAR(2)) is constructed as the first component of the unique (in law) weak solution of a stochastic differential equation. The Cameron–Martin–Girsanov formula and a random time-change are used to overcome the difficulties associated with possible discontinuities and degeneracies in the coefficients of the stochastic differential equation. A sequence of approximating processes that are well-suited to numerical calculations is shown to converge in distribution to a solution of this equation, provided the initial state vector has finite second moments. The approximating sequence is used to fit a CTAR(2) model to percentage relative daily changes in the Australian All Ordinaries Index of share prices by maximization of the ‘Gaussian likelihood'. The advantages of non-linear relative to linear time series models are briefly discussed and illustrated by means of the forecasting performance of the model fitted to the All Ordinaries Index.

1997 ◽  
Vol 29 (01) ◽  
pp. 205-227 ◽  
Author(s):  
P. J. Brockwell ◽  
R. J. Williams

A continuous-time threshold autoregressive process of order two (CTAR(2)) is constructed as the first component of the unique (in law) weak solution of a stochastic differential equation. The Cameron–Martin–Girsanov formula and a random time-change are used to overcome the difficulties associated with possible discontinuities and degeneracies in the coefficients of the stochastic differential equation. A sequence of approximating processes that are well-suited to numerical calculations is shown to converge in distribution to a solution of this equation, provided the initial state vector has finite second moments. The approximating sequence is used to fit a CTAR(2) model to percentage relative daily changes in the Australian All Ordinaries Index of share prices by maximization of the ‘Gaussian likelihood'. The advantages of non-linear relative to linear time series models are briefly discussed and illustrated by means of the forecasting performance of the model fitted to the All Ordinaries Index.


1994 ◽  
Vol 31 (4) ◽  
pp. 1103-1109 ◽  
Author(s):  
Rob J. Hyndman

Continuous-time threshold autoregressive (CTAR) processes have been developed in the past few years for modelling non-linear time series observed at irregular intervals. Several approximating processes are given here which are useful for simulation and inference. Each of the approximating processes implicitly defines conditions on the thresholds, thus providing greater understanding of the way in which boundary conditions arise.


1994 ◽  
Vol 31 (04) ◽  
pp. 1103-1109
Author(s):  
Rob J. Hyndman

Continuous-time threshold autoregressive (CTAR) processes have been developed in the past few years for modelling non-linear time series observed at irregular intervals. Several approximating processes are given here which are useful for simulation and inference. Each of the approximating processes implicitly defines conditions on the thresholds, thus providing greater understanding of the way in which boundary conditions arise.


Author(s):  
Georg A. Gottwald ◽  
Ian Melbourne

A recent paper of Melbourne & Stuart (2011 A note on diffusion limits of chaotic skew product flows. Nonlinearity 24 , 1361–1367 (doi:10.1088/0951-7715/24/4/018)) gives a rigorous proof of convergence of a fast–slow deterministic system to a stochastic differential equation with additive noise. In contrast to other approaches, the assumptions on the fast flow are very mild. In this paper, we extend this result from continuous time to discrete time. Moreover, we show how to deal with one-dimensional multiplicative noise. This raises the issue of how to interpret certain stochastic integrals; it is proved that the integrals are of Stratonovich type for continuous time and neither Stratonovich nor Itô for discrete time. We also provide a rigorous derivation of super-diffusive limits where the stochastic differential equation is driven by a stable Lévy process. In the case of one-dimensional multiplicative noise, the stochastic integrals are of Marcus type both in the discrete and continuous time contexts.


2020 ◽  
Vol 9 (2) ◽  
pp. 459-470
Author(s):  
Helin Wu ◽  
Yong Ren ◽  
Feng Hu

Abstract In this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ̲ t = e s s sup τ ∈ T t e s s inf σ ∈ T t E t g [ R ( τ , σ ) ] and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ¯ t = e s s inf σ ∈ T t e s s sup τ ∈ T t E t g [ R ( τ , σ ) ] are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$ V ( t ) = V ̲ t = V ¯ t follows. Furthermore, we also consider the constrained case of Dynkin game.


Author(s):  
RAMON VAN HANDEL

When are quantum filters asymptotically independent of the initial state? We show that this is the case for absolutely continuous initial states when the quantum stochastic model satisfies an observability condition. When the initial system is finite dimensional, this condition can be verified explicitly in terms of a rank condition on the coefficients of the associated quantum stochastic differential equation.


2005 ◽  
Vol 42 (3) ◽  
pp. 861-866 ◽  
Author(s):  
Ragnar Norberg ◽  
Mogens Steffensen

The titular question is investigated for fairly general semimartingale investment and asset price processes. A discrete-time consideration suggests a stochastic differential equation and an integral expression for the time value in the continuous-time framework. It is shown that the two are equivalent if the jump part of the price process converges. The integral expression, which is the answer to the titular question, is the sum of all investments accumulated with returns on the asset (a stochastic integral) plus a term that accounts for the possible covariation between the two processes. The arbitrage-free price of the time value is the expected value of the sum (i.e. integral) of all investments discounted with the locally risk-free asset.


2014 ◽  
Vol 2 (4) ◽  
pp. 313-334
Author(s):  
Jianfen Feng ◽  
Dianfa Chen ◽  
Mei Yu

AbstractIn this paper, a new approach is developed to estimate the value of defaultable securities under the actual probability measure. This model gives the price framework by means of the method of backward stochastic differential equation. Such a method solves some problems in most of existing literatures with respect to pricing the credit risk and relaxes certain market limitations. We provide the price of defaultable securities in discrete time and in continuous time respectively, which is favorable to practice to manage real credit risk for finance institutes.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550022
Author(s):  
Matteo Gregoratti

We consider a quantum stochastic evolution in continuous time defined by the quantum stochastic differential equation of Hudson and Parthasarathy. On one side, such an evolution can also be defined by a standard Schrödinger equation with a singular and unbounded Hamiltonian operator K. On the other side, such an evolution can also be obtained as a limit from Hamiltonian repeated interactions in discrete time. We study how the structure of the Hamiltonian K emerges in the limit from repeated to continuous interactions. We present results in the case of 1-dimensional multiplicity and system spaces, where calculations can be explicitly performed, and the proper formulation of the problem can be discussed.


2005 ◽  
Vol 42 (03) ◽  
pp. 861-866 ◽  
Author(s):  
Ragnar Norberg ◽  
Mogens Steffensen

The titular question is investigated for fairly general semimartingale investment and asset price processes. A discrete-time consideration suggests a stochastic differential equation and an integral expression for the time value in the continuous-time framework. It is shown that the two are equivalent if the jump part of the price process converges. The integral expression, which is the answer to the titular question, is the sum of all investments accumulated with returns on the asset (a stochastic integral) plus a term that accounts for the possible covariation between the two processes. The arbitrage-free price of the time value is the expected value of the sum (i.e. integral) of all investments discounted with the locally risk-free asset.


Sign in / Sign up

Export Citation Format

Share Document