Some Atlantic Populations Related to Diplectrum radiale (Serranidae), with Description of a New Subspecies from the Gulf Coast of the United States

Copeia ◽  
1948 ◽  
Vol 1948 (4) ◽  
pp. 266
Author(s):  
Isaac Ginsburg
Author(s):  
Kenneth G. Orr

A wealth of strikingly unusual and beautiful objects of Indian manufacture were excavated from the burials of the Spiro Mound, Leflore (sic.) County, Oklahoma during 1936-37. Engraved Gulf Coast conch shells, shell beads of a dozen types, river pearls, effigy pipes, long delicately chipped flint blades, feather and textile cloths and precisely incised pottery vessels were excavated in quantities. So unusual was this material that, at the time, the archaeological science was unable to answer a host of questions which immediately arose concerning the identity of the tribe who had made the artifacts and who were buried with them. How long ago had they occupied the region? From where had they come, and where did they go? The chronological relationship of the Spiro Mound Culture to the known cultures of the United States was of particular concern to the investigators. How and where did this tribe fit into the picture of America's past?


2018 ◽  
Vol 63 (sp1) ◽  
pp. 165 ◽  
Author(s):  
Deborah Carter ◽  
Paul Link ◽  
Patrick Walther ◽  
Andrew Ramey ◽  
David Stallknecht ◽  
...  

<em>Abstract.</em>—Because of their tendency to accumulate in estuaries and coastal regions, organochlorine (OC) contaminants such as pesticides and polychlorinated biphenyls (PCBs) represent potential threats to the quality of essential fish habitat for many shark species. These compounds pose special risks to immature sharks in particular because of their ability to impair growth and sexual maturation in juvenile fish at environmentally relevant levels of exposure. In order to assess the extent of these risks in shark populations on the East Coast of the United States, the present study examined concentrations of 30 OC pesticides/pesticide metabolites and total PCBs in juvenile sandbar <em>Carcharhinus plumbeus </em>and blacktip <em>C. limbatus </em>sharks from seven major nursery areas in the western Atlantic Ocean and eastern Gulf of Mexico. Quantifiable levels of PCBs and 13 OC pesticides/ pesticide metabolites were detected via gas chromatography and mass spectrometry in liver of 25 young-of-the-year blacktip sharks from the southeastern U.S. Atlantic coast and three regions on Florida’s gulf coast: Cedar Key, Tampa Bay, and Charlotte Harbor. Similarly, quantifiable levels of PCBs and 14 OC pesticides/metabolites were detected in 23 juvenile <em>C. plumbeus </em>from three sites on the northeastern U.S. coast: middle Delaware Bay, lower Chesapeake Bay, and Virginia’s eastern shore. Liver OC concentrations in Atlantic sandbar and blacktip sharks were higher than expected and, in some cases, comparable with elevated levels observed in deep-sea and pelagic sharks. Although significantly lower than those observed in Atlantic sharks, pesticide and PCB levels in Florida blacktip sharks were similar to, if not greater than, OC concentrations reported in adults of other coastal shark species. Based on these data, OC contamination appears to pose significant threats to habitat quality in sandbar and blacktip shark nursery areas on the U.S. Atlantic coast.


2016 ◽  
Vol 17 (2) ◽  
pp. 693-711 ◽  
Author(s):  
Hamed Ashouri ◽  
Soroosh Sorooshian ◽  
Kuo-Lin Hsu ◽  
Michael G. Bosilovich ◽  
Jaechoul Lee ◽  
...  

Abstract This study evaluates the performance of NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979–2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.


2009 ◽  
Vol 22 (12) ◽  
pp. 3211-3231 ◽  
Author(s):  
Song Yang ◽  
Yundi Jiang ◽  
Dawei Zheng ◽  
R. Wayne Higgins ◽  
Qin Zhang ◽  
...  

Abstract Variations of U.S. regional precipitation in both observations and free-run experiments with the NCEP Climate Forecast System (CFS) are investigated. The seasonality of precipitation over the continental United States and the time–frequency characteristics of precipitation over the Southwest (SW) are the focus. The differences in precipitation variation among different model resolutions are also analyzed. The spatial distribution of U.S. precipitation is characterized by high values over the East and the West Coasts, especially over the Gulf Coast and southeast states, and low values elsewhere except over the SW in summer. A large annual cycle of precipitation occurs over the SW, northern plains, and the West Coast. Overall, the CFS captures the above features reasonably well, except for the SW. However, it overestimates the precipitation over the western United States, except the SW in summer, and underestimates the precipitation over the central South, except in springtime. It also overestimates (underestimates) the precipitation seasonality over the intermountain area and Gulf Coast states (SW, West Coast, and northern Midwest). The model using T126 resolution captures the observed features more realistically than at the lower T62 resolution over a large part of the United States. The variability of observed SW precipitation is characterized by a large annual cycle, followed by a semiannual cycle, and the oscillating signals on annual, semiannual, and interannual time scales account for 41% of the total precipitation variability. However, the CFS, at both T62 and T126 resolution, fails in capturing the above feature. The variability of SW precipitation in the CFS is much less periodic. The annual oscillation of model precipitation is much weaker than that observed and it is even much weaker than the simulated semiannual oscillation. The weakly simulated annual cycle is attributed by the unrealistic precipitation simulations of all seasons, especially spring and summer. On the annual time scale, the CFS fails in simulating the relationship between the SW precipitation and the basinwide sea surface temperature (SST) and the overlying atmospheric circulation. On the semiannual time scale, the model exaggerates the response of the regional precipitation to the variations of SST and atmospheric circulation over the tropics and western Atlantic, including the Gulf of Mexico. This study also demonstrates a challenge for the next-generation CFS, at T126 resolution, to predict the variability of North American monsoon climate.


Sign in / Sign up

Export Citation Format

Share Document