Infectious Bursal Disease Virus: Further Characterization with Evidence for a Single-Stranded RNA Virus

1980 ◽  
Vol 24 (2) ◽  
pp. 423 ◽  
Author(s):  
B. R. Cho ◽  
T. L. McDonald
Author(s):  
Christopher J. Kasanga ◽  
T. Yamaguchi ◽  
H.M. Munang’andu ◽  
P.N. Wambura ◽  
K. Ohya ◽  
...  

Infectious bursal disease virus (IBDV) is a bi-segmented RNA virus, which belongs to the genus Avibirnavirus of the family Birnaviridae. Two serotypes, 1 and 2, exist in IBDV. The serotype 1 IBDVs are the causative agents of infectious bursal disease (IBD) in chickens worldwide and lead to immunosuppression in young birds. Genome re-assortment has been speculated to occur and contribute to the emergence of new IBDV strains. However, evidence was lacking until recently when two re-assortant viruses were detected in China. In this study, we determined the complete nucleotide sequence of an IBDV, designated KZC-104, from a confirmed natural IBD outbreak in Lusaka, Zambia in 2004. The genome consisted of 3074 and 2651 nucleotides in the coding regions of segments A and B, respectively. Alignment of both nucleotide and deduced amino acid sequences, and phylogenetic analysis revealed that the genome segment A of KZC-104 was derived from a very virulent strain, whereas its segment B was derived from a classical attenuated strain. On BLAST search, the full-length segments A and B sequences showed 98% closest nucleotide homology to the very virulent strain D6948 and 99.8% closest nucleotide homology to the classical attenuated strain D78, respectively. This is a unique IBDV reassortant strain, which has emerged in nature involving segment B of a live attenuated vaccine. This observation provides direct evidence for the involvement of vaccine strains in the emergence of reassortant IBDV in the field. Taken together, these findings suggest an additional risk of using live IBDV vaccines, which may act as genetic donors for genome re-assortment. Further studies are required to investigate the epidemiology and biological characteristics of reassortant strains so that the appropriate and safe IBDV vaccines can be recommended.


2009 ◽  
Vol 386 (3) ◽  
pp. 891-901 ◽  
Author(s):  
Daniel Luque ◽  
Irene Saugar ◽  
María Teresa Rejas ◽  
José L. Carrascosa ◽  
José F. Rodríguez ◽  
...  

2001 ◽  
Vol 75 (22) ◽  
pp. 10815-10828 ◽  
Author(s):  
José R. Castón ◽  
Jorge L. Martı́nez-Torrecuadrada ◽  
Antonio Maraver ◽  
Eleuterio Lombardo ◽  
José F. Rodrı́guez ◽  
...  

ABSTRACT Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.


2006 ◽  
Vol 80 (14) ◽  
pp. 6895-6905 ◽  
Author(s):  
Damià Garriga ◽  
Jordi Querol-Audí ◽  
Fernando Abaitua ◽  
Irene Saugar ◽  
Joan Pous ◽  
...  

ABSTRACT Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus that causes a highly contagious disease in young chickens leading to significant economic losses in the poultry industry. The VP2 protein, the only structural component of the IBDV icosahedral capsid, spontaneously assembles into T=1 subviral particles (SVP) when individually expressed as a chimeric gene. We have determined the crystal structure of the T=1 SVP to 2.60 Å resolution. Our results show that the 20 trimeric VP2 clusters forming the T=1 shell are further stabilized by calcium ions located at the threefold icosahedral axes. The structure also reveals a new unexpected domain swapping that mediates interactions between adjacent trimers: a short helical segment located close to the end of the long C-terminal arm of VP2 is projected toward the threefold axis of a neighboring VP2 trimer, leading to a complex network of interactions that increases the stability of the T=1 particles. Analysis of crystal packing shows that the exposed capsid residues, His253 and Thr284, determinants of IBDV virulence and the adaptation of the virus to grow in cell culture, are involved in particle-particle interactions.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1682
Author(s):  
Yulong Wang ◽  
Nan Jiang ◽  
Linjin Fan ◽  
Xinxin Niu ◽  
Wenying Zhang ◽  
...  

Infectious bursal disease virus (IBDV) is a non-enveloped, bi-segmented double-stranded RNA virus and the causative agent of a poultry immunosuppressive disease known as infectious bursal disease (IBD). The novel variant IBDV (nVarIBDV) recently posed a great threat to the development of the poultry industry. In this study, we identified a novel segment-reassortant IBDV strain, IBDV-JS19-14701 (Genotype A2dB3). Phylogenic analysis showed that Segments A and B of IBDV-JS19-14701 were derived from emerging nVarIBDV (Genotype A2dB1) and long-prevalent HLJ0504-like strains (Genotype A3B3) in China, respectively. The pathogenicity of IBDV-JS19-14701 was further evaluated via animal experiments. IBDV-JS19-14701 exhibited a similar virulence to chickens with the nVarIBDV. The identification of this reassortment event is beneficial for understanding the epidemiology of nVarIBDV and will contribute to the efficient prevention and control of IBD.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Yulong Wang ◽  
Nan Jiang ◽  
Linjin Fan ◽  
Li Gao ◽  
Kai Li ◽  
...  

Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Yufang Meng ◽  
Xiaoxue Yu ◽  
Chunxue You ◽  
Wenjuan Zhang ◽  
Yingfeng Sun ◽  
...  

Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.


Sign in / Sign up

Export Citation Format

Share Document