m-valued sub-system of (m + n)-valued propositional calculus

1949 ◽  
Vol 14 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Tzu-Hua Hoo

An (m + n)-valued propositional calculus2 may happen to be a subsystem of an m-valued propositional calculus , though the converse is never true. This fact may give us the impression that, as m grows, the content of becomes meagre. The present treatment is intended to remove this impression by constructing a complete, m-valued sub-system of any (m + n)-valued propositional calculus.In the following we adopt the customary, autonymous mode of speech according to which symbols belonging to the object calculi or languages are used in the syntactic language as names for themselves, and juxtaposition serves to denote juxtaposition.2.1 = df stands for definational identity in the syntactic language.2.11 ≡ stands for definational identity in the object calculi.2.2 ∊, ⊂, ∩, {x1, …, xn} are used in their meanings as customarily employed in the theory of sets—∊ for class membership, ⊂ for proper inclusion, ∩ for the product operation of classes, {x1, …, xn} for the class with x1, …, xn as its only elements.2.3 x, y, z are used as unspecified natural numbers including 0. m, n, i, j are used as unspecified natural numbers other than 0.2.401 Definition. δ = df as the function of two variables defined for any x, y such that2.41 Definition. For m ≧ 2, ιm = df the function of two variables denned on the set {0, …, m − 1} such that ιm (x, y) = y − x for x ≦ y and ιn(x, y) = 0 for x > y.


1975 ◽  
Vol 20 (3) ◽  
pp. 301-304
Author(s):  
Torleiv Kløve

Following Craven (1965) we say that a set M of natural numbers is harmonically convergent if converges, and we call μ(M) the harmonic sum of M. (Craven defined these concepts for sequences rather than sets, but we found it convenient to work with sets.) Throughout this paper, lower case italics denote non-negative integers.



1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.



1946 ◽  
Vol 11 (3) ◽  
pp. 71-72 ◽  
Author(s):  
W. V. Quine

In a previous note I showed a new way to define the ordered pair. I made use of the notations ‘Nn’ (for class of natural numbers) and ‘Sv’ (for successor of v), remarking that they are readily defined without appeal to ordered pairs or relations. Adopting the auxiliary abbreviation: I defined the ordered pair thus:



1957 ◽  
Vol 22 (2) ◽  
pp. 176-186 ◽  
Author(s):  
E. J. Lemmon

The main aims of this paper are firstly to present new and simpler postulate sets for certain well-known systems of modal logic, and secondly, in the light of these results, to suggest some new or newly formulated calculi, capable of interpretation as systems of epistemic or deontic modalities. The symbolism throughout is that of [9] (see especially Part III, Chapter I). In what follows, by a Lewis modal system is meant a system which (i) contains the full classical propositional calculus, (ii) is contained in the Lewis system S5, (iii) admits of the substitutability of tautologous equivalents, (iv) possesses as theses the four formulae:We shall also say that a system Σ1 is stricter than a system Σ2, if both are Lewis modal systems and Σ1 is contained in Σ2 but Σ2 is not contained in Σ1; and we shall call Σ1absolutely strict, if it possesses an infinity of irreducible modalities. Thus, the five systems of Lewis in [5], S1, S2, S3, S4, and S5, are all Lewis modal systems by this definition; they are in an order of decreasing strictness from S1 to S5; and S1 and S2 alone are absolutely strict.



1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.



1932 ◽  
Vol 27 ◽  
pp. ix-xiii ◽  
Author(s):  
H. W. Turnbull

When a student first approaches the theory of infinite continued fractions a natural question that suggests itself is how to evaluate the expression



1987 ◽  
Vol 52 (1) ◽  
pp. 205-207
Author(s):  
David Marker

We will show that there is a nontrivial strongly minimal expansion of (ω, s), the natural numbers with successor. Pillay and Steinhorn [1] proved that there is no -minimal expansion of (ω, ≤). This result provides an interesting contrast.The strongly minimal expansion of (ω, s) is very easy to describe. Consider the order-two permutation of ω, π recursively defined byLet T be Th(ω, s, π, 0).



1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.



2002 ◽  
Vol 67 (3) ◽  
pp. 897-909
Author(s):  
David M. Evans ◽  
M. E. Pantano

Various results have been proved about growth rates of certain sequences of integers associated with infinite permutation groups. Most of these concern the number of orbits of the automorphism group of an ℵ0-categorical structure on the set of unordered n-subsets or on the set of n-tuples of elements of . (Recall that by the Ryll-Nardzewski Theorem, if is countable and ℵ0-categorical, the number of the orbits of its automorphism group Aut() on the set of n-tuples from is finite and equals the number of complete n-types consistent with the theory of .) The book [Ca90] is a convenient reference for these results. One of the oldest (in the realms of ‘folklore’) is that for any sequence (Kn)n∈ℕ of natural numbers there is a countable ℵ0-categorical structure such that the number of orbits of Aut() on the set of n-tuples from is greater than kn for all n.These investigations suggested the study of the growth rate of another sequence. Let be an ℵ0-categorical structure and X be a finite subset of . Let acl(X) be the algebraic closure of X, that is, the union of the finite X-definable subsets of . Equivalently, this is the union of the finite orbits on of Aut()(X), the pointwise stabiliser of X in Aut(). Define



1979 ◽  
Vol 86 (2) ◽  
pp. 219-226 ◽  
Author(s):  
M. McCrudden

For any group G and x ∈ G, and any n ∈ ℕ (the natural numbers) leti.e. the set of all nth roots of x in G.



Sign in / Sign up

Export Citation Format

Share Document