Π10 classes and Boolean combinations of recursively enumerable sets

1974 ◽  
Vol 39 (1) ◽  
pp. 95-96 ◽  
Author(s):  
Carl G. Jockusch

Let be the collection of all sets which are finite Boolean combinations of recursively enumerable (r.e.) sets of numbers. Dale Myers asked [private correspondence] whether there exists a nonempty class of sets containing no member of . In this note we construct such a class. The motivation for Myers' question was his observation (reported in [1]) that the existence of such a class is equivalent to the assertion that there is a finite consistent set of tiles which has no m-trial tiling of the plane for any m (obeying the “origin constraint”). (For explanations of these terms and further results on tilings of the plane, cf. [1] and [5].) In addition to the application to tilings, the proof of our results gives some information on bi-immune sets and on complete extensions of first-order Peano arithmetic.A class of sets may be roughly described as the class of infinite binary input tapes for which a fixed Turing machine fails to halt, or alternatively as the class of infinite branches of a recursive tree of finite binary sequences. (In these definitions, sets of numbers are identified with the corresponding binary sequences.) Precise definitions, as well as many results concerning such classes, may be found in [3] and [4].

1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.


1976 ◽  
Vol 41 (2) ◽  
pp. 419-426
Author(s):  
Manuel Lerman

Let α be an admissible ordinal, and let (α) denote the lattice of α-r.e. sets, ordered by set inclusion. An α-r.e. set A is α*-finite if it is α-finite and has ordertype less than α* (the Σ1 projectum of α). An a-r.e. set S is simple if (the complement of S) is not α*-finite, but all the α-r.e. subsets of are α*-finite. Fixing a first-order language ℒ suitable for lattice theory (see [2, §1] for such a language), and noting that the α*-finite sets are exactly those elements of (α), all of whose α-r.e. subsets have complements in (α) (see [4, p. 356]), we see that the class of simple α-r.e. sets is definable in ℒ over (α). In [4, §6, (Q22)], we asked whether an admissible ordinal α exists for which all simple α-r.e. sets have the same 1-type. We were particularly interested in this question for α = ℵ1L (L is Gödel's universe of constructible sets). We will show that for all α which are regular cardinals of L (ℵ1L is, of course, such an α), there are simple α-r.e. sets with different 1-types.The sentence exhibited which differentiates between simple α-r.e. sets is not the first one which comes to mind. Using α = ω for intuition, one would expect any of the sentences “S is a maximal α-r.e. set”, “S is an r-maximal α-r.e. set”, or “S is a hyperhypersimple α-r.e. set” to differentiate between simple α-r.e. sets. However, if α > ω is a regular cardinal of L, there are no maximal, r-maximal, or hyperhypersimple α-r.e. sets (see [4, Theorem 4.11], [5, Theorem 5.1] and [1,Theorem 5.21] respectively). But another theorem of (ω) points the way.


1994 ◽  
Vol 59 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Joseph Barback

AbstractIn [14] J. Hirschfeld established the close connection of models of the true AE sentences of Peano Arithmetic and homomorphic images of the semiring of recursive functions. This fragment of Arithmetic includes most of the familiar results of classical number theory. There are two nice ways that such models appear in the isols. One way was introduced by A. Nerode in [20] and is referred to in the literature as Nerode Semirings. The other way is called a tame model. It is very similar to a Nerode Semiring and was introduced in [6]. The model theoretic properties of Nerode Semirings and tame models have been widely studied by T. G. McLaughlin ([16], [17], and [18]).In this paper we introduce a new variety of tame model called a torre model. It has as a generator an infinite regressive isol with a nice structural property relative to recursively enumerable sets and their extensions to the isols. What is then obtained is a nonstandard model in the isols of the fragment of Peano Arithmetic with the following property: Let T be a torre model. Let f be any recursive function, and let fΛ be its extension to the isols. If there is an isol A with fΛ(A) ϵ T, then there is also an isol B ϵ T with fΛ(B) = fΛ(A).


2017 ◽  
Vol 82 (1) ◽  
pp. 359-374
Author(s):  
RASMUS BLANCK ◽  
ALI ENAYAT

AbstractLet $\left\langle {{W_n}:n \in \omega } \right\rangle$ be a canonical enumeration of recursively enumerable sets, and suppose T is a recursively enumerable extension of PA (Peano Arithmetic) in the same language. Woodin (2011) showed that there exists an index $e \in \omega$ (that depends on T) with the property that if${\cal M}$ is a countable model of T and for some${\cal M}$-finite set s, ${\cal M}$ satisfies ${W_e} \subseteq s$, then${\cal M}$ has an end extension${\cal N}$ that satisfies T + We = s.Here we generalize Woodin’s theorem to all recursively enumerable extensions T of the fragment ${{\rm{I}\rm{\Sigma }}_1}$ of PA, and remove the countability restriction on ${\cal M}$ when T extends PA. We also derive model-theoretic consequences of a classic fixed-point construction of Kripke (1962) and compare them with Woodin’s theorem.


1983 ◽  
Vol 48 (1) ◽  
pp. 193-196 ◽  
Author(s):  
Yuri Gurevich

AbstractIt is well known that for all recursively enumerable sets X1, X2 there are disjoint recursively enumerable sets Y1 ⊆ Y2 such that Y ⊆ X1, Y2 ⊆ X2 and Y1, ⋃ Y2 = X1 ⋃ X2. Alistair Lachlan called distributive lattices satisfying this property separated. He proved that the first-order theory of finite separated distributive lattices is decidable. We prove here that the first-order theory of all separated distributive lattices is undecidable.


1968 ◽  
Vol 33 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Jens Erik Fenstad

The well-known incompleteness results of Gödel assert that there is no recursively enumerable set of sentences of formalized first order arithmetic which entails all true statements of that theory. It is equally well known that by introducing sufficiently nonconstructive rules, such as the ω-rule of induction, completeness can be re-established.Starting from the work of Turing [4] Feferman in [1] developed another method, viz. the study of transfinite recursive progressions of theories, for closing the gap between Gödel (recursively enumerable sets of axioms yield incompleteness) and Tarski (number-theoretic truth is not arithmetically definable).


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


1963 ◽  
Vol 28 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. P. Belluce ◽  
C. C. Chang

This paper contains some results concerning the completeness of a first-order system of infinite valued logicThere are under consideration two distinct notions of completeness corresponding to the two notions of validity (see Definition 3) and strong validity (see Definition 4). Both notions of validity, whether based on the unit interval [0, 1] or based on linearly ordered MV-algebras, use the element 1 as the designated truth value. Originally, it was thought by many investigators in the field that one should be able to prove that the set of valid sentences is recursively enumerable. It was first proved by Rutledge in [9] that the set of valid sentences in the monadic first-order infinite valued logic is recursively enumerable.


Sign in / Sign up

Export Citation Format

Share Document