Supercompact cardinals, elementary embeddings and fixed points

1982 ◽  
Vol 47 (1) ◽  
pp. 84-88
Author(s):  
Julius B. Barbanel

Supercompactness is usually defined in terms of the existence of certain ultrafilters. By the well-known procedure of taking ultrapowers of V (the universe of sets) and transitive collapses, one obtains transitive inner models of V and corresponding elementary embeddings from V into these inner models. These embeddings have been studied extensively (see, e.g. [3] or [4]). We investigate the action of these embeddings on cardinals. In particular, we establish a characterization, based upon cofinality, of which cardinals are fixed by these embeddings.

1994 ◽  
Vol 59 (2) ◽  
pp. 461-472
Author(s):  
Garvin Melles

Mathematicians have one over on the physicists in that they already have a unified theory of mathematics, namely, set theory. Unfortunately, the plethora of independence results since the invention of forcing has taken away some of the luster of set theory in the eyes of many mathematicians. Will man's knowledge of mathematical truth be forever limited to those theorems derivable from the standard axioms of set theory, ZFC? This author does not think so, he feels that set theorists' intuition about the universe of sets is stronger than ZFC. Here in this paper, using part of this intuition, we introduce some axiom schemata which we feel are very natural candidates for being considered as part of the axioms of set theory. These schemata assert the existence of many generics over simple inner models. The main purpose of this article is to present arguments for why the assertion of the existence of such generics belongs to the axioms of set theory.Our central guiding principle in justifying the axioms is what Maddy called the rule of thumb maximize in her survey article on the axioms of set theory, [8] and [9]. More specifically, our intuition conforms with that expressed by Mathias in his article What is Maclane Missing? challenging Mac Lane's view of set theory.


1984 ◽  
Vol 49 (3) ◽  
pp. 808-812
Author(s):  
Yoshihiro Abe

J. Barbanel [1] characterized the class of cardinals fixed by an elementary embedding induced by a normal ultrafilter on Pκλ assuming that κ is supercompact. In this paper we shall prove the same results from the weaker hypothesis that κ is strongly compact and the ultrafilter is fine.We work in ZFC throughout. Our set-theoretic notation is quite standard. In particular, if X is a set, ∣X∣ denotes the cardinality of X and P(X) denotes the power set of X. Greek letters will denote ordinals. In particular γ, κ, η and γ will denote cardinals. If κ and λ are cardinals, then λ<κ is defined to be supγ<κγγ. Cardinal exponentiation is always associated from the top. Thus, for example, 2λ<κ means 2(λ<κ). V denotes the universe of all sets. If M is an inner model of ZFC, ∣X∣M and P(X)M denote the cardinality of X in M and the power set of X in M respectively.We review the basic facts on fine ultrafilters and the corresponding elementary embeddings. (For detail, see [2].)Definition. Assume κ and λ are cardinals with κ ≤ λ. Then, Pκλ = {X ⊂ λ∣∣X∣ < κ}.It is important to note that ∣Pκλ∣ = λ< κ.


2015 ◽  
Vol 21 (3) ◽  
pp. 251-269 ◽  
Author(s):  
MATTHEW FOREMAN

AbstractWe introduce a natural principleStrong Chang Reflectionstrengthening the classical Chang Conjectures. This principle is between a huge and a two huge cardinal in consistency strength. In this note we prove that it implies the existence of an inner model with a huge cardinal. The technique we explore for building inner models with huge cardinals adapts to show thatdecisiveideals imply the existence of inner models with supercompact cardinals. Proofs for all of these claims can be found in [10].1,2


Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


1971 ◽  
Vol 36 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Kenneth Kunen

One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.


2018 ◽  
Vol 46 ◽  
pp. 1860045
Author(s):  
Murli Manohar Verma ◽  
Bal Krishna Yadav

The fixed points for the dynamical system in the phase space have been calculated with dark matter in the [Formula: see text] gravity models. The stability conditions of these fixed points are obtained in the ongoing accelerated phase of the universe, and the values of the Hubble parameter and Ricci scalar are obtained for various evolutionary stages of the universe. We present a range of some modifications of general relativistic action consistent with the [Formula: see text]CDM model. We elaborate upon the fact that the upcoming cosmological observations would further constrain the bounds on the possible forms of [Formula: see text] with greater precision that could in turn constrain the search for dark matter in colliders.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kourosh Nozari ◽  
Narges Rashidi

We consider a hybrid scalar field which is nonminimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses on the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor and the universe in this setup experiences a phantom divide crossing.


1953 ◽  
Vol 18 (2) ◽  
pp. 145-167 ◽  
Author(s):  
J. C. Shepherdson

In this third and last paper on inner models we consider some of the inherent limitations of the method of using inner models of the type defined in 1.2 for the proof of consistency results for the particular system of set theory under consideration. Roughly speaking this limitation may be described by saying that practically no further consistency results can be obtained by the construction of models satisfying the conditions of theorem 1.5, i.e., conditions 1.31, 1.32, 1.33, 1.51, viz.:This applies in particular to the ‘complete models’ defined in 1.4. Before going on to a precise statement of these limitations we shall consider now the theorem on which they depend. This is concerned with a particular type of complete model examples of which we call “proper complete models”; they are those complete models which are essentially interior to the universe, those whose classes are sets of the universe constituting a class thereof, i.e., those for which the following proposition is true:The main theorem of this paper is that the statement that there are no models of this kind can be expressed formally in the same way as the axioms A, B, C and furthermore it can be proved that if the axiom system A, B, C is consistent then so is the system consisting of axioms A, B, C, plus this new hypothesis that there exist no proper complete models. When combined with the axiom ‘V = L’ introduced by Gödel in (1) this new hypothesis yields a system in which any normal complete model which exists has for its universal class V, the universal class of the original system.


Sign in / Sign up

Export Citation Format

Share Document