Some model theory of modules. II. on stability and categoricity of flat modules

1983 ◽  
Vol 48 (4) ◽  
pp. 970-985 ◽  
Author(s):  
Philipp Rothmaler

This is the second part of a study on model theory of modules begun in [RO]. Throughout, I refer to that paper as “Part I”. I observed there a coincidence between some algebraic and logical points of view in the theory of modules, which led to a convenient representation of p.p. definable sets in flat modules (§1); it becomes especially nice in the case of regular rings (cf. Remark 7 in Part I). Using this in the present paper I obtain a simplified criterion for total transcendence and superstability in the case of flat modules. This enables me to give, besides partial results for arbitrary flat modules (§2), a complete description of the stability classes for modules over regular rings (§3). Particularly, it turns out that a totally transcendental module over a regular ring can be regarded as a module over a semisimple ring (cf. Remark 10 in Part I). This is the crucial observation for the examination of categoricity here: By Morley's theorem, a countable ℵ1-categorical theory is totally transcendental. Consequently, an ℵ1-categorical module over a countable regular ring can be regarded as a module over a semisimple ring. That is why I separately treat categoricity of modules over semisimple rings (§4), even without any assumption on the power of the ring. As a consequence I obtain a complete description of ℵ1-categorical modules over countable regular rings (§5). In the investigation presented here the main tool is the technique of idempotents avoiding the commutativity assumption made in the corresponding results of Garavaglia [GA 1, pp. 86–88], who used maximal ideals for that purpose. At the end of the present paper I show how to derive these latter results in our context.On the way I simplify the known criterion for elementary equivalence for modules over regular rings (§3), which simplifies again in case of semisimple rings (§4). Such a criterion is needed in order to construct Vaughtian pairs (in the categoricity consideration) and it turns out to be useful also for another purpose treated in the third part of this series of papers.

1971 ◽  
Vol 23 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Howard E. Gorman

In [1], we discussed completions of differentially finitely generated modules over a differential ring R. It was necessary that the topology of the module be induced by a differential ideal of R and it was natural that this ideal be contained in J(R), the Jacobson radical of R. The ideal to be chosen, called Jd(R), was the intersection of those ideals which are maximal among the differential ideals of R. The question as to when Jd(R) ⊆ J(R) led to the definition of a class of rings called radically regular rings. These rings do satisfy the inclusion, and we showed in [1, Theorem 2] that R could always be “extended”, via localization, to a radically regular ring in such a way as to preserve all its differential prime ideals.In the present paper, we discuss the stability of radical regularity under quotient maps, localization, adjunction of a differential indeterminate, and integral extensions.


Author(s):  
Najib Mahdou

We show that eachR-module isn-flat (resp., weaklyn-flat) if and only ifRis an(n,n−1)-ring (resp., a weakly(n,n−1)-ring). We also give a new characterization ofn-Von Neumann regular rings and a characterization of weakn-Von Neumann regular rings for (CH)-rings and for local rings. Finally, we show that in a class of principal rings and a class of local Gaussian rings, a weakn-Von Neumann regular ring is a (CH)-ring.


1984 ◽  
Vol 49 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Philipp Rothmaler

This is the third and last part of an investigation in several topics of first order model theory of modules which I began in Some model theory of modules. I. On total transcendence of modules (this Journal, vol. 48 (1983), pp. 570–574) and continued in Some model theory of modules. II. On stability and categoricity of flat modules (this Journal, vol. 48 (1983), pp. 970–985). Throughout I refer to these papers as “Part I” and “Part II”.Although these parts are only loosely connected, I will tacitly use the notation and preliminaries already introduced in the preceding ones. Further details are given in §0. Concerning Part II, the reader is assumed to be familiar with most of §1, a very small part of §4, and the criterion for elementary equivalence of modules over regular rings given in §3 (Lemma 20) of that part.Using those tools in this paper I consider completeness of the (elementary) theory of all modules (and of some of its extensions) (§2), and eliminability of cardinality quantifiers in the elementary theories of modules (§3).§2 is almost entirely devoted to a new short proof based on the technique developed in Part II of a theorem of Tukavkin which seems to be the first relevant result concerning the completeness of the theory of all modules (after the simple observation that any theory of infinite vector spaces is complete).


1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2007 ◽  
Vol 06 (05) ◽  
pp. 779-787 ◽  
Author(s):  
SONIA L'INNOCENTE ◽  
MIKE PREST

Let M be a Verma module over the Lie algebra, sl 2(k), of trace zero 2 × 2 matrices over the algebraically closed field k. We show that the ring, RM, of definable scalars of M is a von Neumann regular ring and that the canonical map from U( sl 2(k)) to RM is an epimorphism of rings. We also describe the Ziegler closure of M. The proofs make use of ideas from the model theory of modules.


Author(s):  
Zoran Petrovic ◽  
Maja Roslavcev

Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gr?bner basis. We prove this result using only the defining property of a von Neumann regular ring.


1982 ◽  
Vol 34 (1) ◽  
pp. 23-30
Author(s):  
S. K. Berberian

Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an ℵ0-continuous regular ring is unitregular [4, Theorem 3.2].The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.Throughout, R denotes a regular ring (with unity).Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism φ : J → K, where J and K are principal right ideals of R (left factor-correspondences are defined dually).


1986 ◽  
Vol 38 (3) ◽  
pp. 633-658 ◽  
Author(s):  
K. R. Goodearl ◽  
D. E. Handelman

We study direct limits of finite products of matrix algebras (i.e., locally matricial algebras), their ordered Grothendieck groups (K0), and their tensor products. Given a dimension group G, a general problem is to determine whether G arises as K0 of a unit-regular ring or even as K0 of a locally matricial algebra. If G is countable, this is well known to be true. Here we provide positive answers in case (a) the cardinality of G is ℵ1, or (b) G is an arbitrary infinite tensor product of the groups considered in (a), or (c) G is the group of all continuous real-valued functions on an arbitrary compact Hausdorff space. In cases (a) and (b), we show that G in fact appears as K0 of a locally matricial algebra. Result (a) is the basis for an example due to de la Harpe and Skandalis of the failure of a determinantal property in a non-separable AF C*-algebra [18, Section 3].


1975 ◽  
Vol 17 (5) ◽  
pp. 727-731
Author(s):  
George Szeto

R. Arens and I. Kaplansky ([1]) call a ring A biregular if every two sided principal ideal of A is generated by a central idempotent and a ring A strongly regular if for any a in A there exists b in A such that a=a2b. In ([1], Sections 2 and 3), a lot of interesting properties of a biregular ring and a strongly regular ring are given. Some more properties can also be found in [3], [5], [8], [9] and [13]. For example, J. Dauns and K. Hofmann ([3]) show that a biregular ring A is isomorphic with the global sections of the sheaf of simple rings A/K where K are maximal ideals of A. The converse is also proved by R. Pierce ([9], Th. 11–1). Moreover, J. Lambek ([5], Th. 1) extends the above representation of a biregular ring to a symmetric module.


1995 ◽  
Vol 32 (02) ◽  
pp. 494-507 ◽  
Author(s):  
François Baccelli ◽  
Serguei Foss

This paper focuses on the stability of open queueing systems under stationary ergodic assumptions. It defines a set of conditions, the monotone separable framework, ensuring that the stability region is given by the following saturation rule: ‘saturate' the queues which are fed by the external arrival stream; look at the ‘intensity' μ of the departure stream in this saturated system; then stability holds whenever the intensity of the arrival process, say λ satisfies the condition λ < μ, whereas the network is unstable if λ > μ. Whenever the stability condition is satisfied, it is also shown that certain state variables associated with the network admit a finite stationary regime which is constructed pathwise using a Loynes-type backward argument. This framework involves two main pathwise properties, external monotonicity and separability, which are satisfied by several classical queueing networks. The main tool for the proof of this rule is subadditive ergodic theory. It is shown that, for various problems, the proposed method provides an alternative to the methods based on Harris recurrence and regeneration; this is particularly true in the Markov case, where we show that the distributional assumptions commonly made on service or arrival times so as to ensure Harris recurrence can in fact be relaxed.


Sign in / Sign up

Export Citation Format

Share Document