Believing the axioms. II

1988 ◽  
Vol 53 (3) ◽  
pp. 736-764 ◽  
Author(s):  
Penelope Maddy

This is a continuation of Believing the axioms. I, in which nondemonstrative arguments for and against the axioms of ZFC, the continuum hypothesis, small large cardinals and measurable cardinals were discussed. I turn now to determinacy hypotheses and large large cardinals, and conclude with some philosophical remarks.Determinacy is a property of sets of reals. If A is such a set, we imagine an infinite game G(A) between two players I and II. The players take turns choosing natural numbers. In the end, they have generated a real number r (actually a member of the Baire space ωω). If r is in A, I wins; otherwise, II wins. The set A is said to be determined if one player or the other has a winning strategy (that is, a function from finite sequences of natural numbers to natural numbers that guarantees the player a win if he uses it to decide his moves).Determinacy is a “regularity” property (see Martin [1977, p. 807]), a property of well-behaved sets, that implies the more familiar regularity properties like Lebesgue measurability, the Baire property (see Mycielski [1964] and [1966], and Mycielski and Swierczkowski [1964]), and the perfect subset property (Davis [1964]). Infinitary games were first considered by the Polish descriptive set theorists Mazur and Banach in the mid-30s; Gale and Stewart [1953] introduced them into the literature, proving that open sets are determined and that the axiom of choice can be used to construct an undetermined set.

2010 ◽  
Vol 3 (1) ◽  
pp. 71-92 ◽  
Author(s):  
ZACH WEBER

This paper begins an axiomatic development of naive set theory—the consequences of a full comprehension principle—in a paraconsistent logic. Results divide into two sorts. There is classical recapture, where the main theorems of ordinal and Peano arithmetic are proved, showing that naive set theory can provide a foundation for standard mathematics. Then there are major extensions, including proofs of the famous paradoxes and the axiom of choice (in the form of the well-ordering principle). At the end I indicate how later developments of cardinal numbers will lead to Cantor’s theorem, the existence of large cardinals, and a counterexample to the continuum hypothesis.


1986 ◽  
Vol 51 (3) ◽  
pp. 591-603 ◽  
Author(s):  
Arthur W. Apter ◽  
James M. Henle

The theory of large cardinals in the absence of the axiom of choice (AC) has been examined extensively by set theorists. A particular motivation has been the study of large cardinals and their interrelationships with the axiom of determinacy (AD). Many important and beautiful theorems have been proven in this area, especially by Woodin, who has shown how to obtain, from hypermeasurability, models for the theories “ZF + DC + ∀α < ℵ1(ℵ1 → (ℵ1)α)” and . Thus, consequences of AD whose consistency strength appeared to be beyond that of the more standard large cardinal hypotheses were shown to have suprisingly weak consistency strength.In this paper, we continue the study of large cardinals in the absence of AC and their interrelationships with AD by examining what large cardinal structures are possible on cardinals below ℵω in the absence of AC. Specifically, we prove the following theorems.Theorem 1. Con(ZFC + κ1 < κ2are supercompact cardinals) ⇒ Con(ZF + DC + The club filter on ℵ1is a normal measure + ℵ1and ℵ2are supercompact cardinals).Theorem 2. Con(ZF + AD) ⇒ Con(ZF + ℵ1, ℵ2and ℵ3are measurable cardinals which carry normal measures + μωis not a measure on any of these cardinals).


Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 86 ◽  
Author(s):  
Dmitri Shakhmatov ◽  
Víctor Yañez

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group G without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every sequence ( U n ) of non-empty open subsets of G, one can choose a point x n ∈ U n for all n ∈ N in such a way that the resulting sequence ( x n ) has a p-limit in G; that is, { n ∈ N : x n ∈ V } ∈ p for every neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group G above is not pseudo- ω -bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum ⨁ i ∈ I X i , where each space X i is either maximal or discrete, contains no infinite separable pseudocompact subsets.


Sign in / Sign up

Export Citation Format

Share Document