Plongement dense d'un corps ordonné dans sa clôture réelle

1991 ◽  
Vol 56 (3) ◽  
pp. 974-980 ◽  
Author(s):  
Françoise Delon

AbstractWe study the structures (K ⊂ Kr), where K is an ordered field and Kr its real closure, in the language of ordered fields with an additional unary predicate for the subfield K. Two such structures (K ⊂ Kr) and (L ⊂ Lr) are not necessarily elementary equivalent when K and L are. But with some saturation assumption on K and L, then the two structures become equivalent, and we give a description of the complete theory.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lothar Sebastian Krapp ◽  
Salma Kuhlmann ◽  
Gabriel Lehéricy
Keyword(s):  

Abstract In this paper, we undertake a systematic model- and valuation-theoretic study of the class of ordered fields which are dense in their real closure. We apply this study to determine definable henselian valuations on ordered fields, in the language of ordered rings. In light of our results, we re-examine the Shelah–Hasson Conjecture (specialized to ordered fields) and provide an example limiting its valuation-theoretic conclusions.


1989 ◽  
Vol 41 (5) ◽  
pp. 808-829 ◽  
Author(s):  
Victoria Powers

Marshall's Spaces of Orderings are an abstract setting for the reduced theory of quadratic forms and Witt rings. A Space of Orderings consists of an abelian group of exponent 2 and a subset of the character group which satisfies certain axioms. The axioms are modeled on the case where the group is an ordered field modulo the sums of squares of the field and the subset of the character group is the set of orders on the field. There are other examples, arising from ordered semi-local rings [4, p. 321], ordered skew fields [2, p. 92], and planar ternary rings [3]. In [4], Marshall showed that a Space of Orderings in which the group is finite arises from an ordered field. In further papers Marshall used these abstract techniques to provide new, more elegant proofs of results known for ordered fields, and to prove theorems previously unknown in the field setting.


1971 ◽  
Vol 36 (3) ◽  
pp. 441-444 ◽  
Author(s):  
Abraham Robinson

The notion of algebraic closedness plays an important part in the theory of commutative fields. The corresponding notion in the theory of ordered fields is (not only intuitively but in a sense which can be made precise in a metamathematical framework, compare [4]) that of a real closed ordered field. Several suggestions have been made (see [2] and [8]) for the formulation of corresponding concepts in the theory of groups and in the theory of skew fields (division rings, noncommutative fields). Here we present a concept of this kind, which preserves the principal metamathematical properties of algebraically closed commutative fields and which applies to a wide class of first order theories K, including the theories of commutative and of skew fields and the theories of commutative and of general groups.


2005 ◽  
Vol 70 (1) ◽  
pp. 29-60 ◽  
Author(s):  
Marcus Tressl

§1. Introduction. Let M be a totally ordered set. A (Dedekind) cut p of M is a couple (pL, pR) of subsets pL, pR of M such that pL ⋃ pR = M and pL < pR, i.e., a < b for all a ∈ pL, b ∈ pR. In this article we are looking for model completeness results of o-minimal structures M expanded by a set pL for a cut p of M. This means the following. Let M be an o-minimal structure in the language L and suppose M is model complete. Let D be a new unary predicate and let p be a cut of (the underlying ordered set of) M. Then we are looking for a natural, definable expansion of the L(D)-structure (M, pL) which is model complete.The first result in this direction is a theorem of Cherlin and Dickmann (cf. [Ch-Dic]) which says that a real closed field expanded by a convex valuation ring has a model complete theory. This statement translates into the cuts language as follows. If Z is a subset of an ordered set M we write Z+ for the cut p with pR = {a ∈ M ∣ a > Z} and Z− for the cut q with qL = {a ∈ M ∣ a < Z}.


1986 ◽  
Vol 51 (4) ◽  
pp. 981-991 ◽  
Author(s):  
Şerban A. Basarab

In his famous paper [1] on the elementary theory of finite fields Ax considered fields K with the property that every absolutely irreducible variety defined over K has K-rational points. These fields have been called pseudo algebraically closed (pac) and also regularly closed, and extensively studied by Jarden, Éršov, Fried, Wheeler and others, culminating with the basic works [8] and [11].The above algebraic-geometric definition of pac fields can be put into the following equivalent model-theoretic version: K is existentially complete (ec) relative to the first order language of fields into each regular field extension of K. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field (K, <) is called in [2] pseudo real closed (prc) if (K, <) is ec in every ordered field extension (L, <) with L regular over K. The concept of pre ordered field has also been introduced by McKenna in his thesis [15] by analogy with the original algebraic-geometric definition of pac fields.Given a positive integer e, a system K = (K; P1, …, Pe), where K is a field and P1, …, Pe are orders of K (identified with the corresponding positive cones), is called an e-fold ordered field (e-field). In his thesis [9] van den Dries developed a model theory for e-fields. The main result proved in [9, Chapter II] states that the theory e-OF of e-fields is model con. panionable, and the models of the model companion e-OF are explicitly described.


1996 ◽  
Vol 42 (4-6) ◽  
pp. 541-549 ◽  
Author(s):  
Zenon Ligatsikas ◽  
Renaud Rioboo ◽  
Marie Françoise Roy

2018 ◽  
Vol 83 (2) ◽  
pp. 617-633
Author(s):  
PHILIP EHRLICH ◽  
ELLIOT KAPLAN

AbstractIn [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$, i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$. In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf{No}}$ that are themselves initial. It is further shown that an initial subdomain of ${\bf{No}}$ is discrete if and only if it is a subdomain of ${\bf{No}}$’s canonical integer part ${\bf{Oz}}$ of omnific integers. Finally, making use of class models the results of [16] are extended by showing that the theories of nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups and initial subfields of ${\bf{No}}$.


1993 ◽  
Vol 58 (3) ◽  
pp. 915-930 ◽  
Author(s):  
Rafel Farré

AbstractIn well-known papers ([A-K1], [A-K2], and [E]) J. Ax, S. Kochen, and J. Ershov prove a transfer theorem for henselian valued fields. Here we prove an analogue for henselian valued and ordered fields. The orders for which this result apply are the usual orders and also the higher level orders introduced by E. Becker in [Bl] and [B2]. With certain restrictions, two henselian valued and ordered fields are elementarily equivalent if and only if their value groups (with a little bit more structure) and their residually ordered residue fields (a henselian valued and ordered field induces in a natural way an order in its residue field) are elementarily equivalent. Similar results are proved for elementary embeddings and ∀-extensions (extensions where the structure is existentially closed).


1970 ◽  
Vol 35 (2) ◽  
pp. 239-241 ◽  
Author(s):  
E. W. Madison

It is well known that every field (formally, real field ) has an algebraic closure (real-closure ). This is to say is an algebraic extension of which is algebraically closed (real-closed). Of course, certain properties of carry over to . In particular, M. O. Rabin has proved in [3] that the algebraic closure—which is of course unique up to isomorphism—of a computable field is computable. The purpose of this note is to establish an analogue of Rabin's theorem for formally real fields. It is clear that a direct analogue can be formulated only in the case of ordered fields, for otherwise there may be many (nonisomorphic) such .


Sign in / Sign up

Export Citation Format

Share Document