Building iteration trees

1991 ◽  
Vol 56 (4) ◽  
pp. 1369-1384 ◽  
Author(s):  
Alessandro Andretta

AbstractIt is shown, assuming the existence of a Woodin cardinal δ, that every tree ordering on some limit ordinal λ < δ with a cofinal branch is the tree ordering of some iteration tree on V.

1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


Author(s):  
William J. Mitchell ◽  
John R. Steel
Keyword(s):  

2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


1970 ◽  
Vol 22 (6) ◽  
pp. 1118-1122 ◽  
Author(s):  
Doyle O. Cutler ◽  
Paul F. Dubois

Let G be a p-primary Abelian group. Recall that the final rank of G is infn∈ω{r(pnG)}, where r(pnG) is the rank of pnG and ω is the first limit ordinal. Alternately, if Γ is the set of all basic subgroups of G, we may define the final rank of G by supB∈Γ {r(G/B)}. In fact, it is known that there exists a basic subgroup B of G such that r(G/B) is equal to the final rank of G. Since the final rank of G is equal to the final rank of a high subgroup of G plus the rank of pωG, one could obtain the same information if the definition of final rank were restricted to the class of p-primary Abelian groups of length ω.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


2004 ◽  
Vol 69 (2) ◽  
pp. 371-386 ◽  
Author(s):  
William Mitchell ◽  
Ralf Schindler

Abstract.We construct, assuming that there is no inner model with a Woodin cardinal but without any large cardinal assumption, a model Kc which is iterable for set length iterations, which is universal with respect to all weasels with which it can be compared, and (assuming GCH) is universal with respect to set sized premice.


2018 ◽  
Vol 83 (3) ◽  
pp. 920-938
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractIt is shown that $K|{\omega _1}$ need not be solid in the sense previously introduced by the authors: it is consistent that there is no inner model with a Woodin cardinal yet there is an inner model W and a Cohen real x over W such that $K|{\omega _1}\,\, \in \,\,W[x] \setminus W$. However, if ${0^{\rm{\P}}}$ does not exist and $\kappa \ge {\omega _2}$ is a cardinal, then $K|\kappa$ is solid. We draw the conclusion that solidity is not forcing absolute in general, and that under the assumption of $\neg {0^{\rm{\P}}}$, the core model is contained in the solid core, previously introduced by the authors.It is also shown, assuming ${0^{\rm{\P}}}$ does not exist, that if there is a forcing that preserves ${\omega _1}$, forces that every real has a sharp, and increases $\delta _2^1$, then ${\omega _1}$ is measurable in K.


1963 ◽  
Vol 22 ◽  
pp. 65-71 ◽  
Author(s):  
Masatoshi Ikeda

In the previous paper [3] the author has shown a possibility to construct a series of sfields by taking sfields of quotients of split crossed products of a sfield. In this paper the same problem is treated, and, by considering general crossed products, a generalization of the previous result is given: Let K be a sfield and G be the join of a well-ordered ascending chain of groups Gα of outer automorphisms of K such that a) G1 is the identity automorphism group, b) Gα is a group extension of Gα-1 by a torsion-free abelian group for each non-limit ordinal α, and c) for each limit ordinal α. Then an arbitrary crossed product of K with G is an integral domain with a sfield of quotients Q and the commutor ring of K in Q coincides with the centre of K.


2009 ◽  
Vol 74 (3) ◽  
pp. 1047-1060 ◽  
Author(s):  
John Chisholm ◽  
Ekaterina B. Fokina ◽  
Sergey S. Goncharov ◽  
Valentina S. Harizanov ◽  
Julia F. Knight ◽  
...  

AbstractWe show that for every computable limit ordinal α, there is a computable structure that is categorical, but not relatively categorical (equivalently, it does not have a formally Scott family). We also show that for every computable limit ordinal α, there is a computable structure with an additional relation R that is intrinsically on , but not relatively intrinsically on (equivalently, it is not definable by a computable Σα formula with finitely many parameters). Earlier results in [7], [10], and [8] establish the same facts for computable successor ordinals α.


Sign in / Sign up

Export Citation Format

Share Document