scholarly journals Possible behaviours of the reflection ordering of stationary sets

1995 ◽  
Vol 60 (2) ◽  
pp. 534-547 ◽  
Author(s):  
Jiří Witzany

AbstractIf S, T are stationary subsets of a regular uncountable cardinal κ, we say that S reflects fully in T, S < T, if for almost all α ∈ T (except a nonstationary set) S ∩ α stationary in α. This relation is known to be a well-founded partial ordering. We say that a given poset P is realized by the reflection ordering if there is a maximal antichain 〈Xp: p ∈ P〉 of stationary subsets of Reg(κ) so thatWe prove that if , and P is an arbitrary well-founded poset of cardinality ≤ κ+ then there is a generic extension where P is realized by the reflection ordering on κ.

1985 ◽  
Vol 50 (2) ◽  
pp. 502-509
Author(s):  
Marco Forti ◽  
Furio Honsell

T. Jech [4] and M. Takahashi [7] proved that given any partial ordering R in a model of ZFC there is a symmetric submodel of a generic extension of where R is isomorphic to the injective ordering on a set of cardinals.The authors raised the question whether the injective ordering of cardinals can be universal, i.e. whether the following axiom of “cardinal universality” is consistent:CU. For any partially ordered set (X, ≼) there is a bijection f:X → Y such that(i.e. x ≼ y iff ∃g: f(x) → f(y) injective). (See [1].)The consistency of CU relative to ZF0 (Zermelo-Fraenkel set theory without foundation) is proved in [2], but the transfer method of Jech-Sochor-Pincus cannot be applied to obtain consistency with full ZF (including foundation), since CU apparently is not boundable.In this paper the authors define a model of ZF + CU as a symmetric submodel of a generic extension obtained by forcing “à la Easton” with a class of conditions which add κ generic subsets to any regular cardinal κ of a ground model satisfying ZF + V = L.


1968 ◽  
Vol 9 (1) ◽  
pp. 46-66 ◽  
Author(s):  
W. D. Munn

Let S be a semigroup whose set E of idempotents is non-empty. We define a partial ordering ≧ on E by the rule that e ≧ f and only if ef = f = fe. If E = {ei: i∈ N}, where N denotes the set of all non-negative integers, and if the elements of E form the chainthen S is called an ω-semigroup.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


1990 ◽  
Vol 42 (1) ◽  
pp. 109-125
Author(s):  
Nakhlé Asmar

(1.1) The conjugate function on locally compact abelian groups. Let G be a locally compact abelian group with character group Ĝ. Let μ denote a Haar measure on G such that μ(G) = 1 if G is compact. (Unless stated otherwise, all the measures referred to below are Haar measures on the underlying groups.) Suppose that Ĝ contains a measurable order P: P + P ⊆P; PU(-P)= Ĝ; and P⋂(—P) =﹛0﹜. For ƒ in ℒ2(G), the conjugate function of f (with respect to the order P) is the function whose Fourier transform satisfies the identity for almost all χ in Ĝ, where sgnP(χ)= 0, 1, or —1, according as χ =0, χ ∈ P\\﹛0﹜, or χ ∈ (—P)\﹛0﹜.


2019 ◽  
Vol 84 (1) ◽  
pp. 266-289 ◽  
Author(s):  
VLADIMIR KANOVEI ◽  
VASSILY LYUBETSKY

AbstractUsing a nonLaver modification of Uri Abraham’s minimal $\Delta _3^1$ collapse function, we define a generic extension $L[a]$ by a real a, in which, for a given $n \ge 3$, $\left\{ a \right\}$ is a lightface $\Pi _n^1 $ singleton, a effectively codes a cofinal map $\omega \to \omega _1^L $ minimal over L, while every $\Sigma _n^1 $ set $X \subseteq \omega $ is still constructible.


1975 ◽  
Vol 12 (04) ◽  
pp. 673-683
Author(s):  
G. R. Grimmett

I show that the sumof independent random variables converges in distribution when suitably normalised, so long as theXksatisfy the following two conditions:μ(n)= E |Xn|is comparable withE|Sn| for largen,andXk/μ(k) converges in distribution. Also I consider the associated birth processX(t) = max{n:Sn≦t} when eachXkis positive, and I show that there exists a continuous increasing functionv(t) such thatfor some variableYwith specified distribution, and for almost allu. The functionv, satisfiesv(t) =A(1 +o(t)) logt. The Markovian birth process with parameters λn= λn, where 0 &lt; λ &lt; 1, is an example of such a process.


Author(s):  
Glyn Harman

We write ‖x‖ to denote the least distance from x to an integer, and write p for a prime variable. Duffin and Schaeffer [l] showed that for almost all real α the inequalityhas infinitely many solutions if and only ifdiverges. Thus f(x) = (x log log (10x))−1 is a suitable choice to obtain infinitely many solutions for almost all α. It has been shown [2] that for all real irrational α there are infinitely many solutions to (1) with f(p) = p−/13. We will show elsewhere that the exponent can be increased to 7/22. A very strong result on primes in arithmetic progressions (far stronger than anything within reach at the present time) would lead to an improvement on this result. On the other hand, it is very easy to find irrational a such that no convergent to its continued fraction expansion has prime denominator (for example (45– √10)/186 does not even have a square-free denominator in its continued fraction expansion, since the denominators are alternately divisible by 4 and 9).


1996 ◽  
Vol 119 (2) ◽  
pp. 287-295 ◽  
Author(s):  
K. J. Falconer ◽  
J. D. Howroyd

AbstractWe show that if E is an analytic subset of ℝn thenfor almost all m–dimensional subspaces V of ℝn, where projvE is the orthogonal projection of E onto V and dimp denotes packing dimension. The same inequality holds for lower and upper box counting dimensions, and these inequalities are the best possible ones.


2019 ◽  
Vol 85 (1) ◽  
pp. 467-485
Author(s):  
RADEK HONZIK ◽  
ŠÁRKA STEJSKALOVÁ

AbstractIn the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$, and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$-cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$, where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ-many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$, a generic extension of V, in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}}}$ is indestructible under all ${\kappa ^ + }$-cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$, and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$-closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$-directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$-closed with the greatest lower bounds).


Sign in / Sign up

Export Citation Format

Share Document