Paleolimnology and Prehistory

1967 ◽  
Vol 32 (1) ◽  
pp. 31-35
Author(s):  
John DeCosta ◽  
Claude N. Warren

AbstractArchaeologists have failed to use all available data relevant to climatic changes and other environmental factors necessary for the reconstruction of paleoclimates. This neglect has fostered the continuance of significant problems of reconstruction and interpretation in archaeology. Paleolimnology can be helpful in elucidating some of these problems. Research of this sort has already provided valuable evidence for the advent of agricultural man in Austria, as well as providing data for the reconstruction of paleoclimates in other areas. While pollen analysis has traditionally been used as an indication of climatic change, certain aquatic micro-organisms manifest a more rapid and subtle response to slight climatic changes. Paleolimnological evidence can provide important data for paleoclimatic reconstruction in archaeology.

Author(s):  
Jürgen Ehlers

The last 2–3 Ma have witnessed climatic changes of a scale unknown to the preceding 300 Ma. In the cold periods vegetation was reduced to a steppe, giving rise to large-scale aeolian deposition of sand and loess and river sands and gravels. In the warm stages, flora and fauna recolonized the region. Parts of Europe were repeatedly covered by mountain glaciers or continental ice sheets which brought along huge amounts of unweathered rock debris from their source areas. The ice sheets dammed rivers and redirected drainage towards the North Sea. They created a new, glacial landscape. This chapter presents an outline of the climatic history, and in particular the glacial processes involved in shaping the landscapes of western Europe. By convention, geologists generally tend to draw stratigraphical boundaries in marine deposits because they are more likely to represent continuous sedimentation and relatively consistent environments in comparison to terrestrial sediments. However, marine deposits from the period in question are relatively rarely exposed at the surface. According to a conclusion of the International Geological Congress 1948 the Tertiary/Quaternary boundary was defined as the base of the marine deposits of the Calabrian in southern Italy. In the Calabrian sediments fossils are found that reflect a very distinct climatic cooling (amongst others the foraminifer Hyalinea baltica). This climatic change roughly coincides with a reversal of the earth’s magnetic field; it is situated at the upper boundary of what is called the Olduvai Event. Consequently, it is relatively easy to identify; its age is today estimated at 1.77 Ma (Shackleton et al. 1990). However, in contrast to the older parts of the earth’s history, the significant changes within the Quaternary are not changes in faunal composition but changes in climate. For reasons of long-term climatic evolution the base of the Calabrian is not a very suitable global boundary. Its adoption excludes some of the major glaciations from the Quaternary. Therefore, in major parts of Europe another Tertiary/Quaternary boundary is in use, based on the stratigraphy of the Lower Rhine area (e.g. Zagwijn 1989). Here the most significant climatic change is already recorded as far back as the Gauss/Matuyama magnetic reversal (some 2.6 Ma ago).


1984 ◽  
Vol 5 ◽  
pp. 43-46 ◽  
Author(s):  
Curt Covey

The isotope composition of ocean sediments is the chief data source for Pleistocene climatic changes. It is generally believed that the18O/16O ratio of a sample indicates the global total of glacial ice at the time the sample was deposited. This is roughly correct, but numerous complicating factors limit the accuracy of the isotope proxies.


Antiquity ◽  
1983 ◽  
Vol 57 (220) ◽  
pp. 95-102 ◽  
Author(s):  
J. M. Coles ◽  
B. J. Orme

Following the development of pollen analysis in the earlier part of this century, much effort was devoted to unravelling the sequence of vegetational change during and after the retreat of the last European ice-sheets. The outlines established, questions of causation came to the fore, and the debate focused on factors such as climatic change, rate of species migration from glacial refuges, and natural vegetational succession. In more recent decades, a further factor has been widely investigated, namely the possible influence of humans on the landscape, principally as farmers and smiths. The development and modification of hypotheses is well illustrated by the Elm Decline of the Atlantic period, where climate (Iversen, 1941) or man (Troels-Smith, 1960) and occasionally disease (see refs in Simmons & Tooley, 1981, 134) have been held responsible for a widespread but by no means straightforward decline in elm pollen.


1990 ◽  
Vol 14 ◽  
pp. 359-359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


1990 ◽  
Vol 14 ◽  
pp. 359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


1988 ◽  
Vol 15 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Reid A. Bryson

Research over the past century has shown that the rates and magnitudes of climatic change constitute a continuum. Changes have now been identified in the climatic record that range in duration from interannual through decades and centuries to the multi-millennial time-scale. Examples range from the drought years of the 1930 and 1970 decades to the ponderous comings and goings of the ice-ages. More recently it has become clear that some changes can be quite rapid. In recent decades great progress has been made in identifying the causes of climatic variation.The present understanding of the causes of climatic change emphasizes continental drift (or ‘plate tectonics’) at the million-years' scale, with pulses of plate movement producing significant bursts of volcanic activity that may act on the millennial or century scale. At the multi-millennial scale there is growing agreement that the variations in irradiance of the Earth, resulting from slow changes in the Sun-Earth geometry (the so-called Milankovitch variations), exercise the operative control on the timing of ice-ages and interglacials. At the decadal and interannual scales there is less agreement; but there is at least a body of research which suggests that significant volcanic activity is a contributing factor. There is considerable agreement—but little direct evidence—that anthropogenic causes such as increased carbon dioxide and other Man-made or-enhanced trace gases in the atmosphere, will be important in the coming decades.Cultural responses might be expected to differ across this continuum. To assess the expected response to a climatic variation, one must know at least the shape of the response surface.There is probably a critical threshold combination of climatic change magnitude and duration. Human cultures seem to be adapted to frequently-occurring short ‘aberrations’ from the expected climate. Some evidence indicates, on the other hand, that relatively small changes of climates (of the order of a century in duration) have been associated over the past 8,000 years with cultural changes that proved large enough to lead to different names being assigned in perhaps half of the cultural termini identified. A climate model which includes the effect of volcanic aerosols, suggests that most of the climatic changes associated with these globally synchronous cultural termini are related to peaks of volcanic activity. Some apparently catastrophic events have been recognized in this connection.There remains the problem of assessing, in realistic terms, the impact of large-magnitude climatic variations on modern human societies. Of particular concern is the effect of climatic events associated with very large-scale short-term insertions of aerosols into the atmosphere. It is likely that non-equilibrium models of the atmosphere, with specified sea-surface temperatures, would give realistic results if refined to the degree that they could replicate events of lesser magnitude which have occurred in the past century. At present there appear to be no models in which the formulation of the radiative effect of aerosols or gases gives a good match with observed radiative effects. It seems that much more research, including field experiments, will be needed if science is to supply reliable advice to society on the nature of coming climatic changes.


Parasitology ◽  
2011 ◽  
Vol 138 (12) ◽  
pp. 1508-1518 ◽  
Author(s):  
YENNY DJUARDI ◽  
LINDA J. WAMMES ◽  
TANIAWATI SUPALI ◽  
ERLIYANI SARTONO ◽  
MARIA YAZDANBAKHSH

SUMMARYThe shaping of a child's immune system starts in utero, with possible long-term consequences in later life. This review highlights the studies conducted on the development of the immune system in early childhood up to school-age, discussing the impact that environmental factors may have. Emphasis has been put on studies conducted in geographical regions where exposure to micro-organisms and parasites are particularly high, and the effect that maternal exposures to these may have on an infant's immune responses to third-party antigens. In this respect we discuss the effect on responses to vaccines, co-infections and on the development of allergic disorders. In addition, studies of the impact that such environmental factors may have on slightly older (school) children are highlighted emphasizing the need for large studies in low to middle income countries, that are sufficiently powered and have longitudinal follow-up components to understand the immunological footprint of a child and the consequences throughout life.


Sign in / Sign up

Export Citation Format

Share Document