Wind Dispersal Capacity of Pine Seeds and the Evolution of Different Seed Dispersal Modes in Pines

Oikos ◽  
1995 ◽  
Vol 73 (2) ◽  
pp. 221 ◽  
Author(s):  
Craig W. Benkman
1995 ◽  
Vol 73 (7) ◽  
pp. 1036-1045 ◽  
Author(s):  
D. F. Greene ◽  
E. A. Johnson

Long-distance seed dispersal figures prominently in most plant conservation biology arguments, yet we possess little more than anecdotes concerning the relationship among deposition (seeds/m2), source strength (seeds/m2), and distance. In this paper we derive two simple models for long-distance deposition. The models are tested at the scale of 100–1600 m from the source and found to be within 5-fold of the observed deposition. There is no discernable decline in deposition for the range 300–1600 m. While we hesitate to extend model predictions to greater distances, both the models and the empirical results allow us to assert that rare wind-dispersed species in woodlots (dispersal distance around 1 km) are effectively isolated from one another at the temporal scale of 1000 years. Key words: plant conservation biology, wind dispersal of seeds, metapopulations.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 626-630 ◽  
Author(s):  
Kirk W. Davies ◽  
Roger L. Sheley

Controlling invasive plant infestations is very costly and often unsuccessful. Preventing invasions is more cost-effective than controlling invasive plants after they are established. Because prevention guidelines do not suggest any tools or methods to limit wind dispersal of invasive plant seeds, we investigated the influence of neighboring vegetation height on seed dispersal of a wind-dispersed (yellow salsify) and nonwind-dispersed (medusahead) species. To examine the influence of neighboring vegetation height on dispersal, seeds of both species were released in front of an artificial stand of desert wheatgrass in a modified wind tunnel. Treatments were a complete factorial design with two species, four vegetation heights (10, 30, 40, and 60 cm), three wind speeds (3, 5.5, and 10 km h−1), and three release distances from the neighboring vegetation (0, 15, and 30 cm). The ability of medusahead and yellow salsify seeds to disperse was influenced by the height of neighboring vegetation. Increasing height of neighboring vegetation decreased the number of yellow salsify seeds dispersing across neighboring vegetation. The greatest percentage of medusahead seeds dispersed across the neighboring vegetation was at the shortest height. Based on these results, we suggest that maintaining or promoting tall vegetation neighboring invasive plant infestations may reduce wind dispersal of seeds. More research is needed to investigate the influence of varying heights, densities, structural attributes, and composition of vegetation neighboring infestations and the dispersal of invasive plants.


Oikos ◽  
2014 ◽  
Vol 124 (7) ◽  
pp. 899-907 ◽  
Author(s):  
Erik Kleyheeg ◽  
Casper H. A. van Leeuwen ◽  
Mary A. Morison ◽  
Bart A. Nolet ◽  
Merel B. Soons

2016 ◽  
Vol 17 (6) ◽  
pp. 508-515 ◽  
Author(s):  
O. Benthien ◽  
J. Bober ◽  
J. Castens ◽  
C. Stolter

2019 ◽  
Vol 138 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Katharina Tiebel ◽  
Ludger Leinemann ◽  
Bernhard Hosius ◽  
Robert Schlicht ◽  
Nico Frischbier ◽  
...  

2020 ◽  
Vol 71 (14) ◽  
pp. 4298-4307 ◽  
Author(s):  
Wei Liang ◽  
Zhimin Liu ◽  
Minghu Liu ◽  
Xuanping Qin ◽  
Carol C Baskin ◽  
...  

Abstract Lift-off velocity may be the most useful surrogate to measure the secondary dispersal capacity of diaspores. However, the most important diaspore attribute determining diaspore lift-off velocity is unclear. Furthermore, it is not known whether terminal velocity used to characterize the primary dispersal capacity of diaspores can also be used to predict their secondary wind dispersal capacity. Here, we investigate how diaspore attributes are related to lift-off velocity. Thirty-six species with diaspores differing in mass, shape index, projected area, wing loading, and terminal velocity were used in a wind tunnel to determine the relationship between diaspore attributes and lift-off velocity. We found that diaspore attributes largely explained the variation in lift-off velocity, and wing loading, not terminal velocity, was the best parameter for predicting lift-off velocity of diaspores during secondary wind dispersal. The relative importance of diaspore attributes in determining lift-off velocity was modified by both upwind and downwind slope directions and type of diaspore appendage. These findings allow us to predict diaspore dispersal behaviors using readily available diaspore functional attributes, and they indicate that wing loading is the best proxy for estimating the capacity for secondary dispersal by wind.


2016 ◽  
Vol 169 ◽  
pp. 158-163 ◽  
Author(s):  
Derong Xiao ◽  
Chao Zhang ◽  
Liquan Zhang ◽  
Zhenchang Zhu ◽  
Kun Tian ◽  
...  

Author(s):  
Kliff Eldry G. Ibañez ◽  
Larry V. Padilla

Aims: Malayan box turtles’ (Cuoraamboinensis) ecological niche are essential in an ecosystem but are often overlooked. This study investigated the germination of selected seeds that passed through the gut of Malayan box turtles to determine its role in promoting seed dispersal and aiding seed germination. Study Design:Experimental approach. Place and Duration of Study:Pamantasan ng Lungsod ng Maynila (University of the City of Manila) and Dasmarinas, Cavite between June 2016 to March 2017. Methodology: The seeds that passed through the turtle’s gut (Gut Passed Seeds) and seeds that did not pass through its gut (Mechanically Extracted Seeds) underwent comparative germination test. The Germination Rate (GR) and Percent Germination (%GR) of each group were determined in the study.Seed shadowing was also conducted to evaluate the turtle’s seed dispersal capacity (endozoochory). Results: Results showed that after gut passage, seed GR and %GR were enhanced on Lycopersiconesculentum, Carica papaya, Psidiumguajava, and Muntingiacalabura. However, Germination Rate and Percent Germination of Passifloraquadrangularis decreased after gut passage. Statistical analyses revealed that there is a significant difference in the GR and %G of M. calabura and %G of L. esculentum, and P. quadrangularis. Thread trailing method showed that C. amboinensis can disperse seeds at a distance of 24.8 to 52.8 meters. Conclusion: This study demonstrates the important role of C. amboinensis in the ecosystem through its contribution to plant seed germination and dispersal.It showed that Malayan box turtles are not only seed dispersal agents but are also important in the germination of seeds that they have ingested and defecated.


Sign in / Sign up

Export Citation Format

Share Document