primary dispersal
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 71 (14) ◽  
pp. 4298-4307 ◽  
Author(s):  
Wei Liang ◽  
Zhimin Liu ◽  
Minghu Liu ◽  
Xuanping Qin ◽  
Carol C Baskin ◽  
...  

Abstract Lift-off velocity may be the most useful surrogate to measure the secondary dispersal capacity of diaspores. However, the most important diaspore attribute determining diaspore lift-off velocity is unclear. Furthermore, it is not known whether terminal velocity used to characterize the primary dispersal capacity of diaspores can also be used to predict their secondary wind dispersal capacity. Here, we investigate how diaspore attributes are related to lift-off velocity. Thirty-six species with diaspores differing in mass, shape index, projected area, wing loading, and terminal velocity were used in a wind tunnel to determine the relationship between diaspore attributes and lift-off velocity. We found that diaspore attributes largely explained the variation in lift-off velocity, and wing loading, not terminal velocity, was the best parameter for predicting lift-off velocity of diaspores during secondary wind dispersal. The relative importance of diaspore attributes in determining lift-off velocity was modified by both upwind and downwind slope directions and type of diaspore appendage. These findings allow us to predict diaspore dispersal behaviors using readily available diaspore functional attributes, and they indicate that wing loading is the best proxy for estimating the capacity for secondary dispersal by wind.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Léa Uroy ◽  
Cendrine Mony ◽  
Aude Ernoult

Abstract How connectivity affects plant assemblages is a central issue in landscape ecology. So far, empirical studies have produced contradictory results, possibly because studies: (1) inaccurately assess connectivity by prioritizing the respective effect of the type of habitat on plant assemblages and (2) omit the range of possible plant responses to connectivity depending on dispersal vectors. We focused on three dominant habitat types in agricultural landscapes (woodland, grassland and cropland), and analysed the effect of connectivity on herbaceous plant assemblage similarity for three primary dispersal modes (animal-dispersed, wind-dispersed and unassisted). Using circuit theory, we measured connectivity provided by woodland, grassland and cropland habitats independently. The similarity of plant assemblages was evaluated relative to the random expectation based on the regional pool. Overall, plant assemblage similarity in woodlands and temporary grasslands was dependent on connectivity, but not in wheat croplands. Only animal-dispersed species responded to connectivity. The similarity of animal-dispersed assemblages in woodlands was increased by the connectivity provided by woodland habitats, but was reduced by cropland habitats, whereas in temporary grasslands, similarity was increased by the connectivity provided by cropland habitats. Our results suggest that animal-dispersed species supplement their dispersal pathways, thus improving our knowledge of plant assembly rules in fragmented landscapes.


2019 ◽  
Vol 32 ◽  
pp. 81-101 ◽  
Author(s):  
Raphaële Solé ◽  
Sofia Gripenberg ◽  
Owen T. Lewis ◽  
Lars Markesteijn ◽  
Héctor Barrios ◽  
...  

A significant proportion of the mortality of rainforest trees occurs during early life stages (seeds and seedlings), but mortality agents are often elusive. Our study investigated the role of herbivorous insects and pathogens in the early regeneration dynamics of Guazumaulmifolia (Malvaceae), an important tree species in agroforestry in Central America. We reared pre-dispersal insect seed predators from G.ulmifolia seeds in Panama. We also carried out an experiment, controlling insects and pathogens using insecticide and/or fungicide treatments, as well as seed density, and compared survivorship of G.ulmifolia seeds and seedlings among treatments and relative to untreated control plots. We observed (1) high pre-dispersal attack (92%) of the fruits of G.ulmifolia, mostly by anobiine and bruchine beetles; (2) negligible post-dispersal attack of isolated seeds by insects and pathogens; (3) slow growth and high mortality (> 95%) of seedlings after 14 weeks; (4) low insect damage on seedlings; and (5) a strong positive correlation between seedling mortality and rainfall. We conclude that for G.ulmifolia at our study site the pre-dispersal seed stage is by far the most sensitive stage to insects and that their influence on seedling mortality appears to be slight as compared to that of inclement weather. Thus, the regeneration of this important tree species may depend on effective primary dispersal of seeds by vertebrates (before most of the seed crop is lost to insects), conditioned by suitable conditions in which the seedlings can grow.


2018 ◽  
Vol 285 (1872) ◽  
pp. 20172755 ◽  
Author(s):  
Randall S. Reiserer ◽  
Gordon W. Schuett ◽  
Harry W. Greene

Seed dispersal is a key evolutionary process and a central theme in the population ecology of terrestrial plants. The primary producers of most land-based ecosystems are propagated by and maintained through various mechanisms of seed dispersal that involve both abiotic and biotic modes of transportation. By far the most common biotic seed transport mechanism is zoochory, whereby seeds, or fruits containing them, are dispersed through the activities of animals. Rodents are one group of mammals that commonly prey on seeds (granivores) and play a critical, often destructive, role in primary dispersal and the dynamics of plant communities. In North America, geomyid, heteromyid and some sciurid rodents have specialized cheek pouches for transporting seeds from plant source to larder, where they are often eliminated from the pool of plant propagules by consumption. These seed-laden rodents are commonly consumed by snakes as they forage, but unlike raptors, coyotes, bobcats, and other endothermic predators which eat rodents and are known or implicated to be secondary seed dispersers, the role of snakes in seed dispersal remains unexplored. Here, using museum-preserved specimens, we show that in nature three desert-dwelling rattlesnake species consumed heteromyids with seeds in their cheek pouches. By examining the entire gut we discovered, furthermore, that secondarily ingested seeds can germinate in rattlesnake colons. In terms of secondary dispersal, rattlesnakes are best described as diplochorous. Because seed rescue and secondary dispersal in snakes has yet to be investigated, and because numerous other snake species consume granivorous and frugivorous birds and mammals, our observations offer direction for further empirical studies of this unusual but potentially important channel for seed dispersal.


Author(s):  
Зинаида Анатольевна Нефедова ◽  
Светлана Александровна Мурзина ◽  
Светлана Николаевна Пеккоева ◽  
Алексей Елпидифорович Веселов ◽  
Нина Николаевна Немова ◽  
...  

2015 ◽  
Vol 31 (6) ◽  
pp. 491-498 ◽  
Author(s):  
Kim Valenta ◽  
Mariah E. Hopkins ◽  
Melanie Meeking ◽  
Colin A. Chapman ◽  
Linda M. Fedigan

Abstract:The spatial distribution of adult trees is typically not expected to reflect the spatial patterns of primary seed dispersal, due to many factors influencing post-dispersal modification of the seed shadow, such as seed predation, secondary seed dispersal and density-dependent survival. Here, we test the hypothesis that spatial distributions of primary seed shadows and adult trees are concordant by analysing the spatial distributions of adult Genipa americana trees and the seed shadow produced by its key primary disperser, the capuchin monkey (Cebus capucinus) in a tropical dry forest in Costa Rica. We mapped the dispersal of G. americana seeds by the capuchins during focal animal follows (mean = 463 min, n = 50) of all adults in one free-ranging group over two early wet seasons (May–July, 2005 and 2006). We mapped the locations of all G. americana trees within a 60-ha plot that lay within the home range of the capuchin group. We conducted multiple spatial point pattern analyses comparing degrees of clustering of capuchin defecations and G. americana trees. We found that adult tree distributions and primary dispersal patterns are similarly aggregated at multiple spatial scales, despite the modification of the primary dispersal patterns and long dispersal distances.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 533-537 ◽  
Author(s):  
N. S. Boyd ◽  
A. Hughes

Spreading dogbane is an important weed of wild blueberry fields that decreases yields and hinders harvest operations. A range of experiments was conducted to evaluate the impact of abiotic factors on dogbane seed germination. Freshly harvested seeds were largely nondormant with viability ranging between 67 and 84%. Prolonged exposure to light neither promoted nor inhibited germination. Germination rates and total seed germination varied with temperature and osmotic potential. Significantly fewer seeds germinated at 5 C compared with 10, 15, and 20 C. There was a significant quadratic relationship between dogbane germination and osmotic potential, with significant numbers of seeds germinating at levels as low as −0.5 MPa. Emergence rates declined exponentially with depth in the soil and as many as 9% of seeds germinated but were unable to reach the soil surface. Results indicate that substantial seed germination in blueberry fields is possible and primary dispersal without wind occurs over a very short distance.


2008 ◽  
Vol 276 (1656) ◽  
pp. 523-532 ◽  
Author(s):  
Matthias C Wichmann ◽  
Matt J Alexander ◽  
Merel B Soons ◽  
Stephen Galsworthy ◽  
Laura Dunne ◽  
...  

Human activities have fundamental impacts on the distribution of species through altered land use, but also directly by dispersal of propagules. Rare long-distance dispersal events have a disproportionate importance for the spread of species including invasions. While it is widely accepted that humans may act as vectors of long-distance dispersal, there are few studies that quantify this process. We studied in detail a mechanism of human-mediated dispersal (HMD). For two plant species we measured, over a wide range of distances, how many seeds are carried by humans on shoes. While over half of the seeds fell off within 5 m, seeds were regularly still attached to shoes after 5 km. Semi-mechanistic models were fitted, and these suggested that long-distance dispersal on shoes is facilitated by decreasing seed detachment probability with distance. Mechanistic modelling showed that the primary vector, wind, was less important as an agent of long-distance dispersal, dispersing seeds less than 250 m. Full dispersal kernels were derived by combining the models for primary dispersal by wind and secondary dispersal by humans. These suggest that walking humans can disperse seeds to very long distances, up to at least 10 km, and provide some of the first quantified dispersal kernels for HMD.


Sign in / Sign up

Export Citation Format

Share Document