FRACTIONAL CRYSTALLIZATION OF BASALTIC MAGMA

Author(s):  
IKUO KUSHIRO
1997 ◽  
Vol 134 (1) ◽  
pp. 17-36 ◽  
Author(s):  
S. R. McCUTCHEON ◽  
H. E. ANDERSON ◽  
P. T. ROBINSON

Stratigraphic, petrographic and geochemical evidence indicate that the volcano-sedimentary rocks of the Late Devonian Piskahegan Group, located in the northern Appalachians of southwestern New Brunswick, represent the eroded remnants of a large epicontinental caldera complex. This complex – the Mount Pleasant Caldera – is one of few recognizable pre-Cenozoic calderas and is divisible into Exocaldera, Intracaldera and Late Caldera-Fill sequences. The Intracaldera Sequence comprises four formations that crop out in a triangular-shaped area and includes: thick ash flow tuffs, thick sedimentary breccias that dip inward, and stocks of intermediate to felsic composition that intrude the volcanic pile or are localized along caldera-margin faults. The Exocaldera Sequence contains ash flow tuffs, mafic lavas, alluvial redbeds and porphyritic felsic lavas that comprise five formations. The Late Caldera-Fill Sequence contains rocks that are similar to those of the outflow facies and comprises two formations and two minor intrusive units. Geochemical and mineralogical data support the stratigraphic subdivision and indicate that the basaltic rocks are mantle-derived and have intraplate chemical affinities. The andesites were probably derived from basaltic magma by fractional crystallization and assimilation of crustal material. The various felsic units are related by episodes of fractional crystallization in a high-level, zoned magma chamber. Fractionation was repeatedly interrupted by eruption of material from the roof zone such that seven stages of caldera development have been identified. The genesis of the caldera is related to a period of lithospheric thinning that followed the Acadian Orogeny in the northern Appalachians.


1979 ◽  
Vol S7-XXI (5) ◽  
pp. 631-641 ◽  
Author(s):  
G. Marcelot ◽  
C. Lefevre ◽  
P. Maillet ◽  
R. C. Maury

Abstract The volcanic series of Mt Rantop and Robertson's Thumb, Erromango Island, New Hebrides, formed by fractional crystallization of orogenic basaltic magma of near-island-arc tholeiitic type. Differentiation was controlled mainly by separation of plagioclase, olivine and clinopyroxene. The Mt Rantop series is predominantly tholeiitic (plagioclase at the liquidus, late appearance of magnetite, pigeonite in microphenocrysts, and Fe and Ti remaining constant or increasing in the early stages of differentiation); those of Robertson's Thumb are mostly calc-alkaline (magnetite at the liquidus, late appearance of plagioclase, olivine quickly becoming unstable, orthopyroxene in phenocrysts and early decrease of Fe and Ti). The compositional differences reflect higher fO <sub>2</sub> and PH <sub>2</sub> O in Robertson's Thumb during fractional crystallization.


2020 ◽  
Vol 29 (2) ◽  
pp. 289-303
Author(s):  
Nazim A. Imamverdiyev ◽  
Minakhanym Y. Gasanguliyeva ◽  
Vagif M. Kerimov ◽  
Ulker I. Kerimli

The article is devoted to the petrogeochemical features of Neogene collision volcanism in the central part of the Lesser Caucasus within Azerbaijan. The main goal of the study is to determine the thermodynamic conditions for the formation of Neogene volcanism in the central part of the Lesser Caucasus using the available petrogeochemical material. Using factor analysis, as well as the “IGPET”, “MINPET”, “Petrolog-3” programs, material balance calculations were performed that simulate the phenocryst fractionation process, the crystallization temperature, pressure, and figurative nature of the rock-forming minerals of the formation rocks were calculated. It was determined that at the early and middle stages of crystallization of the rocks of the andesite-dacite-rhyolite formation, the fractionation of amphibole played an important role in the formation of subsequent differentiates. Based on computer simulation, it was revealed that rocks of the andesite-dacite-rhyolite formation were formed by fractional crystallization of the initial high-alumina basaltic magma of high alkalinity in the intermediate magma foci. The calculations of the balance of the substance, simulating the process of fractionation of phenocrysts, as well as magnetite, confirmed the possibility of obtaining rock compositions from andesites to rhyolites as a result of this process. In this case, the process of crystallization differentiation was accompanied by processes of contamination, hybridism and mixing. Based on the geochemical features of rare and rare-earth elements, changes in their ratios, the nature of the mantle source and the type of fractionation process are determined. It was revealed that the enrichment of formation rocks by light rare earths, as well as by many incoherent elements, is associated with the evolution of enriched mantle material. Under high water pressure, as a result of the fractionation of olivine and pyroxene, high-alumina basalts are formed from primary high-magnesian magma, which can be considered parental magma. It was established that, in contrast to the elevated Transcaucasian zone in the more lowered East Caucasus, under conditions of increased fluid pressure and reduced temperature, the melt underwent fractional crystallization in the intermediate centers, being enriched with alkaline, large-ion lithophilic elements, light REEs, etc. This is evidenced by the presence of large crystals of feldspars, the contamination of these minerals by numerous crystals of biotite, magnetite, several generations of these minerals, zonality, as well as the presence of related “water” inclusions, such as hornblendites, hornblende gabbro, etc. The physicochemical conditions for the formation of Neogene volcanic rocks of the Lesser Caucasus are determined.


1985 ◽  
Vol 22 (7) ◽  
pp. 1020-1038 ◽  
Author(s):  
Laurel E. Burns

A discontinuous, elongate zone of mafic and ultramafic plutonic rock crops out in south-central Alaska for a distance of more than 1000 km. Intermediate- and detailed-scale geologic mapping, petrographic study, and compositional data suggest that the plutonic rocks are compositionally, petrologically, and mineralogically distinct from rocks in mid-ocean ridge and back-arc basin ophiolites. The mafic and ultramafic rocks instead represent part of the plutonic core of an intraoceanic island arc.The mafic–ultramafic zone, referred to as the Border Ranges ultramafic and mafic complex (BRUMC), is composed of ultramafic cumulates, gabbronorite cumulates, and massive gabbronorites. A very minor amount of tectonized ultramafic rock of mantle origin is present in the southern part of the BRUMC. A thick sequence of andesitic volcanic rocks, the Talkeetna Formation of Early Jurassic age, lies to the north of and structurally above the mafic–ultramafic zone. Voluminous calcalkaline plutons composed of quartz diorite, tonalite, and minor granodiorite intrude both the mafic plutonic complexes and the andesitic volcanic rocks.The cumulate ultramafic sections are largely composed of dunite ± chromite, wehrlite, clinopyroxenite, and websterite and are characterized by a wide range of Mg–Fe silicate compositions (Fo90–81; En45–50, Fs1–7, Wo45–49; En88–82, Fs11–17), chrome-rich spinels, and a lack of plagioclase. The gabbroic sections are composed of gabbronorites with up to 10–15% magnetite ± ilmenite. Hornblende, if present, is a very minor phase in most gabbroic rocks. The coexisting mineral compositions seen in the gabbroic rocks of the BRUMC (relatively iron-rich pyroxene—Fs6–13, En45–40; En81–63 —and calcic plagioclase An75–100) and their association with magnetite are common in plutonic xenoliths in island-arc rocks.The mineralogy and composition of the gabbroic rocks in the BRUMC are consistent with the fractional crystallization products predicted to be associated with the formation of andesite from a basaltic magma. Consideration of additional data, including detailed and regional field mapping of the plutonic and volcanic rocks and geochronology of the BRUMC and the nearby Talkeetna arc volcanic rocks, strongly suggests that the BRUMC represents relatively deep fractional crystallization products of magmas that produced the Talkeetna Formation volcanic rocks. Field relationships also indicate that intrusion of quartz diorites, tonalites, and granodiorites of batholithic proportions occurred slightly later than formation of the BRUMC.


1973 ◽  
Vol 110 (1) ◽  
pp. 19-28 ◽  
Author(s):  
J. Loeschke

SummaryIn the Karawanken Mountains (SE Austria) spilites (pillow lavas and sills) are found intercalated in a sequence of Paleozoic slates and graywackes. The petrogenesis of these spilites is interpreted as follows: The pillow lavas and sills consolidated as mugearites and hawaiites, which were derived from an alkali olivine-basaltic magma by fractional crystallization. Under low temperature metamorphic conditions water entered into the rocks predominantly from external sources. The primary minerals (Na-Ca plagioclase, pyroxene and glass) were thus replaced either partially or completely by minerals characteristic of spilites (albite, chlorite, epidote and others). The spilites analysed are of secondary origin. They are compared with spilites and basalts of other (continental and oceanic) areas.


Sign in / Sign up

Export Citation Format

Share Document