2012 ◽  
Vol 14 (4) ◽  
pp. 454-459
Author(s):  
Xiaobo XU ◽  
Hualing WU ◽  
Jianqiang WANG ◽  
Shengping WANG

Author(s):  
Gregory R. Wagner ◽  
Emily A. Spieler

This chapter discusses the roles of government in promoting occupational and environmental health, with a focus on the U.S. federal government. Governmental interventions, as described here, can range from non-regulatory interventions, such as dissemination of information or generation and communication of information, to establishing regulatory requirements through the promulgation and enforcement of standards and regulations. The chapter describes the U.S. laws and roles of the administrative agencies responsible for occupational and environmental health, including the Occupational Safety and Health Administration, the Mine Safety and Health Administration, and the Environmental Protection Agency. Noting the budgetary and political constraints on these federal agencies, the chapter goes on to discuss briefly the role of the public and the states. The government also plays a role when preventive efforts fail, and the chapter provides a brief summary of programs designed to provide compensation to injured workers.


2021 ◽  
Vol 11 (10) ◽  
pp. 4342
Author(s):  
Yeanjae Kim ◽  
Jieun Baek ◽  
Yosoon Choi

A smart helmet-based wearable personnel proximity warning system was developed to prevent collisions between equipment and pedestrians in mines. The smart helmet worn by pedestrians receives signals transmitted by Bluetooth beacons attached to heavy equipment, light vehicles, or dangerous zones, and provides visual LED warnings to the pedestrians and operators simultaneously. A performance test of the proposed system was conducted in an underground limestone mine. It was confirmed that as the transmission power of the Bluetooth beacon increased, the Bluetooth low energy (BLE) signal detection distance of the system also increased. The average BLE signal detection distance was at least 10 m, regardless of the facing angle between the smart helmet and Bluetooth beacon. The subjective workload for the smartphone-, smart glasses-, and smart helmet-based proximity warning system (PWS) was evaluated using the National Aeronautics and Space Administration task load index. All six workload parameters were the lowest when using the smart helmet-based PWS. The smart helmet-based PWS can provide visual proximity warning alerts to both the equipment operator and the pedestrian, and it can be expanded to provide worker health monitoring and hazard awareness functions by adding sensors to the Arduino board.


Author(s):  
S.U. Suganthi ◽  
G. Valarmathi ◽  
V. Subashini ◽  
R. Janaki ◽  
R. Prabha

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1148
Author(s):  
Hua Zhang ◽  
Pengjie Tao ◽  
Xiaoliang Meng ◽  
Mengbiao Liu ◽  
Xinxia Liu

With the growth in demand for mineral resources and the increase in open-pit mine safety and production accidents, the intelligent monitoring of open-pit mine safety and production is becoming more and more important. In this paper, we elaborate on the idea of combining the technologies of photogrammetry and camera sensor networks to make full use of open-pit mine video camera resources. We propose the Optimum Camera Deployment algorithm for open-pit mine slope monitoring (OCD4M) to meet the requirements of a high overlap of photogrammetry and full coverage of monitoring. The OCD4M algorithm is validated and analyzed with the simulated conditions of quantity, view angle, and focal length of cameras, at different monitoring distances. To demonstrate the availability and effectiveness of the algorithm, we conducted field tests and developed the mine safety monitoring prototype system which can alert people to slope collapse risks. The simulation’s experimental results show that the algorithm can effectively calculate the optimum quantity of cameras and corresponding coordinates with an accuracy of 30 cm at 500 m (for a given camera). Additionally, the field tests show that the algorithm can effectively guide the deployment of mine cameras and carry out 3D inspection tasks.


2021 ◽  
Vol 13 (2) ◽  
pp. 654
Author(s):  
Meng-Han Tsai ◽  
Hao-Yung Chan ◽  
Yi-Lin Chan ◽  
Heng-Kuang Shen ◽  
Pei-Yi Lin ◽  
...  

This study developed a chatbot to improve the efficiency of government activation of mine safety procedures during natural disasters. Taiwan has a comprehensive governmental system dedicated to responding to frequent natural disasters, and the Bureau of Mines has instituted clear procedures to ensure the delivery of disaster alarms and damage reports. However, the labor- and time-consumption procedures are inefficient. In this study, we propose a system framework for disaster-related information retrieval and immediate notifications to support the execution of mine safety procedures. The framework utilizes instant messaging (IM) applications as the user interface to look up information and send messages to announce the occurrence of disaster events. We evaluated the efficiency of the procedures before and after adopting the system and achieved a time-cost reduction of 55.8 min among three types of disaster events. The study has proven the feasibility of adopting novel techniques for decision-making and assures the improvement of the efficiency and effectiveness of the procedure activation.


Sign in / Sign up

Export Citation Format

Share Document