The Respiratory System

2019 ◽  
Author(s):  
Zerlina Wong ◽  
Michael Nurok

The pulmonary system is crucial for survival. Managing respiratory mechanics and airway requires a sophisticated understanding of pulmonary physiology. This chapter discusses the ways in which oxygen is brought into the body and carbon dioxide is expelled and reviews the principles of respiratory mechanics, including lung compliance, airway resistance, chemoreceptor and mechanoreceptor control of ventilation, hypoxic pulmonary vasoconstriction, distribution of perfusion, and other properties that affect oxygen and carbon dioxide transport. The respiratory system exists in a state of equilibrium, where the inward elastic recoil of the lungs is balanced with the outward elastic recoil of the chest wall. Airway resistance and compliance are important factors that affect ventilation and air movement. This chapter reviews the role that chemoreceptors and mechanoreceptors have on controlling ventilation, as well as the effects that hypercarbia and hypoxemia have on pulmonary and cerebral circulation, and the Bohr and Haldane effects that elucidate understanding of the hemoglobin dissociation curve. These principles all inform the care of patients who require mechanical ventilation, as we endeavor to support them through their surgery or intensive care stay. This review contains 7 figures and 38 references. Key Words: apneic oxygenation, Bohr effect, chemoreceptors, compliance, Haldane effect, hypoxic pulmonary vasoconstriction, resistance, respiratory mechanics, ventilation-perfusion

2019 ◽  
Author(s):  
Gilbert S Tang

An understanding of airway physiology is important for the anesthesiologist, tasked with supporting the patient's respiratory functions which are altered in the conduct of anesthesia and surgery, or which may be abnormal due to co-existing disease. Airflow and airway resistance, lung compliance, spirometric values, flow-volume measurements, work of breathing, ventilation-perfusion matching, and oxygen-carbon dioxide transport are some of the basic principles. Clinical application of physiology allows the anesthesiologist to anticipate and manage changes that may occur when anesthetizing the patient, altering position or manipulating the airway. This review contains 5 tables, and 25 references. Keywords: Ohm’s law, laminar vs turbulent flow, Reynold’s number, Heliox, Bernoulli’s principle, compliance vs elasticity, Law of Laplace, spirometry, dead space, hypoxic pulmonary vasoconstriction


1999 ◽  
Vol 42 (5) ◽  
pp. 1136-1147 ◽  
Author(s):  
Eileen M. Finnegan ◽  
Erich S. Luschei ◽  
Henry T. Hoffman

The pressure in the alveoli of the lungs, created by the elastic recoil of the lungs and respiratory muscle activity, is referred to as alveolar pressure (P a ). The extent to which tracheal pressure (P t ) approximates P a depends on the resistance to airflow offered by structures above and below the point at which tracheal pressure is measured. An understanding of the relationship among P a , P t , and upper and lower airway resistance, and how these values fluctuate during speech, could aid in interpretation and modeling of speech aerodynamics. The purpose of this study was to (a) obtain values for lower airway resistance (R law ), (b) use these R law values to estimate P a during speech, and (c) quantify the degree to which P t approximates P a during production of voiced and voiceless sounds, in comparison to inhalation. In addition, the results were discussed in terms of the degree to which the respiratory system functions as a pressure source. Tracheal pressure (obtained with tracheal puncture) and airflow were measured during sentence production in 6 subjects. Using a technique introduced in this paper, R law was determined from measures of tracheal pressure and flow obtained during a sudden change in upper airway resistance because of release of a voiceless plosive. Mean R law values ranged from 0.14 to 0.32 kPa/(l/s). Each subject's mean R law was used to derive a time-varying measure of P a during speech from continuous measures of tracheal pressure and airflow. P t was approximately 95% of P a during phonation (i.e., when the vocal folds were adducted), 75% of P a during release of the voiceless stop consonant /p/, and 55% of P a during inhalation (i.e., when the vocal folds were abducted). Therefore, the degree to which the respiratory system functioned as an ideal pressure source varied during speech. The ability to estimate P a provides a measure of the pressure produced by the respiratory system that is not influenced by laryngeal activity.


2019 ◽  
Author(s):  
John Yerxa ◽  
Cory J Vatsaas ◽  
Suresh Agarwal

Respiratory system uses an elegant physiologic mechanism to support the metabolic demands of the body through oxygenation and ventilation. Oxygen must be absorbed and delivered to the tissues to sustain oxidative metabolism, whereas carbon dioxide must be expelled in a delicate balance to maintain an acid-base equilibrium. Complete understanding of oxygen content, delivery, consumption, and carbon dioxide elimination is essential as a provider caring for the critically ill patient. This review contains 13 figures and 25 references. Key Words: oxygenation, respiratory system, ventilation, gas exchange, haemoglobin, respiratory physiology, respiratory anatomy, oxidative metabolism, dead space.


Author(s):  
John W. Kreit

Ventilation can occur only when the respiratory system expands above and then returns to its resting or equilibrium volume. This is just another way of saying that ventilation depends on our ability to breathe. Although breathing requires very little effort and even less thought, it’s nevertheless a fairly complex process. Respiratory Mechanics reviews the interaction between applied and opposing forces during spontaneous and mechanical ventilation. It discusses elastic recoil, viscous forces, compliance, resistance, and the equation of motion and the time constant of the respiratory system. It also describes how and why pleural, alveolar, lung transmural, intra-abdominal, and airway pressure change during spontaneous and mechanical ventilation, and the effect of applied positive end-expiratory pressure (PEEP).


1981 ◽  
Vol 241 (5) ◽  
pp. R336-R341 ◽  
Author(s):  
J. T. Fisher ◽  
J. P. Mortola

Static mechanical properties of the respiratory system have been examined during growth. Static inflation limb pressure-volume curves were obtained in rats and rabbits of three age groups, newborn, 2 wk, and adult. Lung weight-to-body weight ratio (LW/BW) decreased with age. Functional residual capacity (FRC) decreased with age when expressed per unit BW but increased when expressed per unit LW. Elastic recoil pressure of the lung at FRC increased during growth. Respiratory system and chest wall compliance per unit body weight (Crs/BW, Cw/BW) decreased during growth while lung compliance (CL/LW) increased. Examination of the newborn and adult allometric functions with respect to each other, suggests that, in general, changes in respiratory variables during growth are age dependent rather than size dependent. The slopes of these functions during growth tend to be less than the allometric slopes found in either the newborn or adult. In the adult the respiratory system and lung-specific compliances are interspecific constants, whereas chest wall specific compliance decreases with body size. In contrast, all the specific compliances of the newborn are size independent. The allometric ratio of Cw to CL decreases with body size in the adult, whereas this ratio is larger in the newborn and is an interspecific constant.


1950 ◽  
Vol 27 (2) ◽  
pp. 184-191 ◽  
Author(s):  
L. LEVENBOOK

1. From titration data it has been calculated that the buffer capacity β for normal Gastrophilus blood at pH 6.8 is 0.0225, for dialysed blood 0.014 and for blood to which carbonic anhydrase has been added, 0.033. The buffer capacity curves are all more or less U-shaped. 2. The contribution towards the total buffer capacity of various buffering substances, of which protein and bicarbonate are the most important, has been quantitatively determined. 3. It is tentatively suggested that the reason why insect blood is better buffered on either side of its normal pH instead of the reverse as in other animals, may be related to the inefficiency of the tracheal respiratory system in eliminating excess CO2.


Author(s):  
Martin E. Atkinson

Oxygen derived from the air is essential for providing energy to drive the metabolic processes in cells and tissues. Air is drawn into and expelled from the body through the respiratory system by the process of ventilation. Within the respiratory system, gaseous exchange takes place between air and blood in the lungs. This is respiration in its true sense; oxygen enters the blood and carbon dioxide leaves it. The activities of the respiratory system must be regulated to ensure adequate oxygen supplies and clearance of carbon dioxide to meet the functional demands of the body. The respiratory and cardiovascular systems work in concert to maintain homeostasis and share several control mechanisms. The respiratory system also provides the driving force for production of speech and modifying sounds during speech. Anatomically, the respiratory system consists of a series of air passages that terminate in the lungs where gaseous exchange takes place across the thin walls of individual alveoli within them. The air passages are supported by bone or cartilage to prevent them from collapsing when air pressure is reduced. A schematic diagram of the respiratory tract is shown in Figure 5.1. In succession, the nose, pharynx, larynx, trachea, and bronchial tree constitute the conducting portion of air passages and the lung alveoli form the respiratory portion where gaseous exchange takes place. Clinically, the air passages as far as the larynx are known as the upper respiratory tract (URT) and the passages below the larynx and the lungs are the lower respiratory tract (LRT). Air is drawn into the body through the nose. The nose is more than a simple air passage; it has important functions in cleaning, warming, and moistening air. Air is filtered by hairs at the entrance to the nose, warmed by heat exchange with the abundant blood vessels in the mucosa of the nasal cavities, and humidified by fluid evaporating from mucus secreted by the lining mucosa. Figure 5.2A shows how bone in the lateral walls of the nasal cavities is folded to increase the surface area available and thus increase their efficiency of heating and humidification. The mucosa lining the respiratory portion has an outer covering known as respiratory epithelium although its full description, pseudostratified ciliated columnar epithelium with goblet cells, is more informative.


Blood ◽  
1948 ◽  
Vol 3 (4) ◽  
pp. 329-348 ◽  
Author(s):  
HERRMAN L. BLUMGART ◽  
MARK D. ALTSCHULE

Abstract The cardiac and respiratory adjustments in chronic anemia and their clinical manifestations have been reviewed. When the oxygen carrying capacity of the blood is diminished, an adequate supply of oxygen to the tissues is maintained by an increased cardiac output, an increased velocity of blood flow, and a relatively more complete abstraction of the oxygen from the blood as it passes through the capillaries. With the increased blood flow, the average peripheral resistance is decreased but the state of the small blood vessels is not uniform everywhere; the blood flow in the hands and kidneys, for instance, may be reduced, while that of other parts of the body is increased. The total oxygen consumption of the body in anemia is not strikingly altered. The blood volume generally is slightly reduced but the plasma volume is normal. The deviations from the normal values vary from patient to patient, but generally are definite when the hemoglobin values are less than 50 per cent and are greatest at the lowest levels of hemoglobin concentration. The close interrelationship between the cardiovascular and respiratory systems is exemplified by the coincident changes in the respiratory system in anemia. The rate and depth of respiration often are increased together with a lowering in the vital capacity and its subdivisions, the reserve and complemental air volumes. The resid- ual air is somewhat increased. These deviations from the normal are similar to those observed in pulmonary congestion or edema and denote a loss of elasticity and expansibility favoring the occurrence of exertional dyspnea. The arterial blood saturation is usually normal at rest but, during exertion, a significant lowering becomes apparent. The importance of hemoglobin in the transport of carbon dioxide is reviewed; the decreased availability of hemoglobin as a buffer in carbon dioxide transport in anemia is compensated by the increased ventilation of the blood in the lungs, rendering the arterial blood somewhat alkalotic. The red cells also play an important role in regard to the respiratory enzyme, carbonic anhydrase. In the anemias due to blood loss, malnutrition, chronic infection, uremia, or leukemia, the blood carbonic anhydrase activity is parallel to the decrease in hemoglobin level leading to a deficiency not only of oxygen carrying capacity but also a decreased ability to absorb carbon dioxide from the tissues and to release it in the lungs. The following factors, many of which are closely interrelated, are operative in the production of dyspnea in anemic patients: the increased respiratory minute volume, the decreased vital capacity and its subdivisions, the abnormalities in carbon dioxide transport and dissociation, the reduced arterial oxygen capacity and the decreased blood oxygen saturation during effort, and the frequently observed elevated blood lactic acid values. The symptoms and signs exhibited by anemic patients, including palpitation and breathlessness on exertion, tachycardia, cardiac dilatation and hypertrophy, are described. In addition to an apical systolic murmur, other systolic and diastolic murmurs are occasionally heard. The arterial blood pressure is frequently lowered in anemia; the venous pressure is generally within the limits of normal. Electrocardiographic abnormalities occur in approximately one-quarter of anemic patients but are minor and not specific in character. The occurrence of angina pectoris, congestive failure, and intermittent claudication in some patients with the development of anemia, and disappearance of these conditions as the anemia is alleviated, is discussed with particular reference to the underlying physiologic mechanisms.


2019 ◽  
Author(s):  
John Yerxa ◽  
Cory J Vatsaas ◽  
Suresh Agarwal

Respiratory system uses an elegant physiologic mechanism to support the metabolic demands of the body through oxygenation and ventilation. Oxygen must be absorbed and delivered to the tissues to sustain oxidative metabolism, whereas carbon dioxide must be expelled in a delicate balance to maintain an acid-base equilibrium. Complete understanding of oxygen content, delivery, consumption, and carbon dioxide elimination is essential as a provider caring for the critically ill patient. This review contains 13 figures and 25 references. Key Words: oxygenation, respiratory system, ventilation, gas exchange, haemoglobin, respiratory physiology, respiratory anatomy, oxidative metabolism, dead space.


Sign in / Sign up

Export Citation Format

Share Document