A BIO-INSPIRED NEURODYNAMICS BASED BACKSTEPPING PATH-FOLLOWING CONTROL OF AN AUV WITH OCEAN CURRENT

Author(s):  
Daqi Zhu ◽  
Yue Zhao ◽  
Mingzhong Yan
2014 ◽  
Vol 1030-1032 ◽  
pp. 1543-1549
Author(s):  
Yu Ling Ye

An engineering approach of path following control for the type of under-actuated AUV, such as REMUS, was proposed. The path following control was separated into 2 parts: heading guidance and heading control. The heading guidance was designed based on the cross-track error and line of sight guidance, and sideslip angle was proposed to compensate the disturbance of the ocean current. The turning criterion was proposed when the vehicle approach the waypoint. A PD control algorithm was presented to the heading control and its parameters variable with the speed. Simulation and field experiments data show that the vehicle follows the path accurately in the environment of current and different speed, and the vertical rudder keeps steady without large scope and high frequency oscillation which is fit for the long-time working AUV. Engineers can debug the parameters based on the experiment data efficiently for their explicit physical meaning.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jiajia Zhou ◽  
Zhaodong Tang ◽  
Honghan Zhang ◽  
Jianfang Jiao

The spatial path following control problem of autonomous underwater vehicles (AUVs) is addressed in this paper. In order to realize AUVs’ spatial path following control under systemic variations and ocean current, three adaptive neural network controllers which are based on the Lyapunov stability theorem are introduced to estimate uncertain parameters of the vehicle’s model and unknown current disturbances. These controllers are designed to guarantee that all the error states in the path following system are asymptotically stable. Simulation results demonstrated that the proposed controller was effective in reducing the path following error and was robust against the disturbances caused by vehicle's uncertainty and ocean currents.


2021 ◽  
Author(s):  
Mingzhen Lin ◽  
Zhiqiang Zhang ◽  
Yandong Pang ◽  
Hongsheng Lin ◽  
Qing Ji

Abstract The path following control under disturbance was studied for an underactuated unmanned surface vehicle (USV) subject to the rudder angle and velocity constraints. For this reason, a variable look-ahead integral line-of-sight (LOS) guidance law was designed on the basis of the disturbance estimation and compensation, and a cascade path following control system was created following the heading control law based on the model prediction. Firstly, the guidance law was designed using the USV three-degree-of-freedom (DOF) motion model and the LOS method, while the tracking error state was introduced to design the real-time estimation of disturbance observer and compensate for the influence of ocean current. Moreover, the stability of the system was analyzed. Secondly, sufficient attention was paid to the rudder angle and velocity constraints and the influence of system delay and other factors in the process of path following when the heading control law was designed with the USV motion response model and the model predictive control (MPC). The moving horizon optimization strategy was adopted to achieve better dynamic performance, effectively overcome the influence of model and environmental uncertainties, and further prove the stability of the control law. Thirdly, a simulation experiment was carried out to verify the effectiveness and advancement of the proposed algorithm. Fourthly, the “Sturgeon 03” USV was used in the lake test of the proposed control algorithm to prove its feasibility in the engineering practices.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772417 ◽  
Author(s):  
Xiao Liang ◽  
Xingru Qu ◽  
Yuanhang Hou ◽  
Jundong Zhang

This article addresses the problem of three-dimensional path following control for underactuated autonomous underwater vehicles in the presence of ocean current. Firstly, three-dimensional path following error model was established based on virtual guidance method. The control law is developed by building virtual velocity errors and backstepping method, which can simplify the virtual control input and avoid the singular problem induced by initial state constraints. Considering the curvature and torsion characteristics of the three-dimensional desired path, the approaching angle is introduced to guarantee fast convergence of error. Nonlinear damping term is introduced to offset the effects of dynamic uncertainties and external disturbances. The controller stability was proved by Lyapunov stable theory. Finally, simulations were conducted and the results indicate the effectiveness and robustness to parameter uncertainties and external disturbances of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zheping Yan ◽  
Yibo Liu ◽  
Jiajia Zhou ◽  
Di Wu

A novel active disturbance rejection control (ADRC) controller is proposed based on support vector regression (SVR). The SVR-ADRC is designed to force an underactuated autonomous underwater vehicle (AUV) to follow a path in the horizontal plane with the ocean current disturbance. It is derived using SVR algorithm to adjust the coefficients of the nonlinear state error feedback (ELSEF) part in ADRC to deal with nonlinear variations at different operating points. The trend of change about ELSEF coefficients in the simulation proves that the designed SVR algorithm maintains the characteristics of astringency and stability. Furthermore, the path following errors under current in simulation has proved the high accuracy, strong robustness, and stability of the proposed SVR-ADRC. The contributions of the proposed controller are to improve the characteristics of ADRC considering the changing parameters in operating environment which make the controller more adaptive for the situation.


Author(s):  
Jawhar Ghommam ◽  
Faïçal Mnif ◽  
Abederraouf Benali ◽  
Nabil Derbel

In this paper we develop a new control law to steer an underactuated surface vessel along a predefined path at a constant forward speed controlled by the main thruster system. The methodology is based on the Serret–Frenet formulation to represent the ship kinematics in terms of path parameters, which allows for convenient definition of cross and along track error. Furthermore, our approach for path following overcomes the stringent initial condition constraints. This paper also addresses the path following with environmental disturbances induced by wave, wind, and ocean-current. The proposed controller is designed based on the Lyapunov direct method and backstepping technique. The closed loop path following errors is proven to be uniform ultimate bounded. Results are demonstrated by high fidelity simulation.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987180
Author(s):  
Zhang Lei ◽  
Sun Yushan ◽  
Zhuang Jiayuan ◽  
Wang Bo

Path following control system of an underactuated unmanned marine vehicle is an important guarantee for its successful operation, the path following control problem of an underactuated and asymmetrical unmanned marine vehicle sailing in the presence of ocean current disturbances is addressed. Asymmetry of the unmanned marine vehicle model and higher order velocity coupling terms of damping coefficients of the unmanned marine vehicle are discussed, which would improve the accuracy of the path following control system. A kind of global differential homeomorphism transformation design is proposed to solve the difficulty of nonzero term appearing in the non-diagonal elements of the system inertia coefficient matrix and damping coefficient matrix, which is caused by the model asymmetry of unmanned marine vehicle. An improved line-of-sight guidance algorithm is presented by introducing longitudinal position error and tracking error weight factor into traditional line-of-sight algorithm, which could speed up the path following process, meanwhile the method could be extended to the application of curve path following. Virtual velocity in the tangent direction of the path to be followed is designed for the control system, by increasing a virtual control input, the underactuated control system is simplified, and the higher order velocity coupling terms of damping coefficients are integrated considered in the virtual control law. Stability of the path following control algorithm proposed for unmanned marine vehicle is proved by Lyapunov theory, and some simulation experiments are carried out to verify the effectiveness of the path following control system designed.


2010 ◽  
Vol 36 (9) ◽  
pp. 1272-1278 ◽  
Author(s):  
Huo-Feng ZHOU ◽  
Bao-Li MA ◽  
Li-Hui SONG ◽  
Fang-Fang ZHANG

Sign in / Sign up

Export Citation Format

Share Document