scholarly journals Evaluation of Multi-Touch Techniques for Physically Simulated Virtual Object Manipulations in 3D Space

Author(s):  
Paulo G. de Barros ◽  
Robert J. Rolleston ◽  
Robert W. Lindeman
Keyword(s):  
Author(s):  
J. J. Fang ◽  
D. E. R. Clark ◽  
J. E. L. Simmons

Abstract In this paper, a simulated three-dimensional virtual world is created with a virtual 3D space ball for virtual object control. We propose a new technique called HV Partition to detect accurate collision on the assembly of two polyhedral solids in virtual simulation. This is a solid-based detection methodology achieved by automatically partitioning the object into smaller solid boxes. Mechanical components, represented by non-convex polyhedra, traversing any degree of freedom, are applied in tins environment. Using this HV Partition method, the accurate interference between two polyhedral objects can be found. The HV Partition methodology is applied following initial approximate collision detection using traditional bounding box and bounding sphere methods. The smaller the number of smaller boxes, the quicker is the performance of the collision algorithm. An automatic partition method is also given to reduce the number of smaller boxes in an object.


2001 ◽  
Vol 32 (12) ◽  
pp. 47-59 ◽  
Author(s):  
Takahide Takano ◽  
Takeshi Naemura ◽  
Hiroshi Harashima

2009 ◽  
Vol 8 (2) ◽  
pp. 1-6 ◽  
Author(s):  
Peng Song ◽  
Hang Yu ◽  
Stefan Winkler

Mixed reality applications can provide users with enhanced interaction experiences by integrating virtual and real world objects in a mixed environment. Through the mixed reality interface, a more realistic and immersive control style is achieved compared to the traditional keyboard and mouse input devices. The interface proposed in this paper consists of a stereo camera, which tracks the user's hands and fingers robustly and accurately in the 3D space. To enable a physically realistic experience in the interaction, a physics engine is adopted for the simulating the physics of virtual object manipulation. The objects can be picked up and tossed with physical characteristics, such as gravity and collisions which occur in the real world. Detection and interaction in our system is fully computer-vision based, without any markers or additional sensors. We demonstrate this gesture-based interface using two mixed reality game implementations: finger fishing, in which a player can simulate fishing for virtual objects with his/her fingers as in a real environment, and Jenga, which is a simulation of the well-known tower building game. A user study is conducted and reported to demonstrate the accuracy, effectiveness and comfort of using this interactive interface.


Author(s):  
Xiaolu Zeng ◽  
Alan Hedge ◽  
Francois Guimbretiere
Keyword(s):  

2009 ◽  
Author(s):  
F. Jacob Seagull ◽  
Peter Miller ◽  
Ivan George ◽  
Paul Mlyniec ◽  
Adrian Park
Keyword(s):  
3D Image ◽  

Author(s):  
D Flöry ◽  
C Ginthoer ◽  
J Roeper-Kelmayr ◽  
A Doerfler ◽  
WG Bradley ◽  
...  
Keyword(s):  

Author(s):  
S. Chef ◽  
C. T. Chua ◽  
C. L. Gan

Abstract Limited spatial resolution and low signal to noise ratio are some of the main challenges in optical signal observation, especially for photon emission microscopy. As dynamic emission signals are generated in a 3D space, the use of the time dimension in addition to space enables a better localization of switching events. It can actually be used to infer information with a precision above the resolution limits of the acquired signals. Taking advantage of this property, we report on a post-acquisition processing scheme to generate emission images with a better image resolution than the initial acquisition.


2021 ◽  
Author(s):  
Marius Fechter ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractVirtual and augmented reality allows the utilization of natural user interfaces, such as realistic finger interaction, even for purposes that were previously dominated by the WIMP paradigm. This new form of interaction is particularly suitable for applications involving manipulation tasks in 3D space, such as CAD assembly modeling. The objective of this paper is to evaluate the suitability of natural interaction for CAD assembly modeling in virtual reality. An advantage of the natural interaction compared to the conventional operation by computer mouse would indicate development potential for user interfaces of current CAD applications. Our approach bases on two main elements. Firstly, a novel natural user interface for realistic finger interaction enables the user to interact with virtual objects similar to physical ones. Secondly, an algorithm automatically detects constraints between CAD components based solely on their geometry and spatial location. In order to prove the usability of the natural CAD assembly modeling approach in comparison with the assembly procedure in current WIMP operated CAD software, we present a comparative user study. Results show that the VR method including natural finger interaction significantly outperforms the desktop-based CAD application in terms of efficiency and ease of use.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


Sign in / Sign up

Export Citation Format

Share Document