scholarly journals Three-dimensional Imaging of Nanoscale Internal Structure by Coherent X-ray Diffraction Microscope

Materia Japan ◽  
2007 ◽  
Vol 46 (12) ◽  
pp. 827-827
Author(s):  
Yoshinori Nishino ◽  
Yukio Takahashi ◽  
Tetsuya Ishikawa ◽  
Eiichiro Matsubara
2012 ◽  
Vol 101 (24) ◽  
pp. 244103 ◽  
Author(s):  
D. Hänschke ◽  
L. Helfen ◽  
V. Altapova ◽  
A. Danilewsky ◽  
T. Baumbach

2006 ◽  
Vol 73 (9) ◽  
Author(s):  
G. J. Williams ◽  
M. A. Pfeifer ◽  
I. A. Vartanyants ◽  
I. K. Robinson

2019 ◽  
Vol 58 (SL) ◽  
pp. SLLA05 ◽  
Author(s):  
Kenji Ohwada ◽  
Kento Sugawara ◽  
Tomohiro Abe ◽  
Tetsuro Ueno ◽  
Akihiko Machida ◽  
...  

Author(s):  
D. Sayre

Single-particle X-ray diffraction is an extension of X-ray crystallography which allows the specimen to be any small solid-state bounded object; in Shapiroet al.[Proc. Natl Acad. Sci. USA(2005),102, 15343–15346] and Thibaultet al.[Acta Cryst.(2006), A62, 248–261], the reader can find descriptions of a recent StonyBrook/Berkeley/Cornell two-dimensional imaging of a yeast cell by this technique. Our present work is aimed at extending the technique to the three-dimensional imaging of a cell. However, the usual method of doing that, namely rotating the specimen into many orientations in the X-ray beam, has not as yet given sufficiently good three-dimensional diffraction data to allow the work to go forward, the largest problem being the difficulty of preventing unwanted levels of change in the specimen through the extended exposure to a hostile environment of X-rays and, in some cases, high vacuum and/or extreme cold. The present paper discusses possible methods of dealing with this problem.


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33631-33636 ◽  
Author(s):  
Xue Bai ◽  
Bo Chen ◽  
Fei Yang ◽  
Xianping Liu ◽  
Daniel Silva-Nunes ◽  
...  

This work studies the inter-structure of a SAPO-34 particle by Bragg coherent X-ray diffraction imaging and serial-block-face scanning electron microscopy.


Author(s):  
David A. Shapiro

In the paper by Sayre [Acta Cryst.(2008), A64, 33–35], a proposal is made to use stereoscopy as a short-term means of overcoming the primarily technological hurdles involved in three-dimensional imaging of the biological cell by soft X-ray diffraction microscopy. This addendum provides a broader perspective on the techniques used by this rapidly maturing community to investigate structural problems in the biological and material sciences.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Sign in / Sign up

Export Citation Format

Share Document