Degradation of Compressive Properties of Composite Laminates Due to Spiral Shape Damage

2003 ◽  
Vol 51 (595) ◽  
pp. 457-458
Author(s):  
Hiroshi Suemasu ◽  
Kenji Nakamura ◽  
Takashi Ishikawa
2013 ◽  
Vol 345 ◽  
pp. 214-217
Author(s):  
Shi Yan ◽  
Ying Guo ◽  
Xia Mei Lu

The low-velocity impact and residual compressive failure processes of composite laminate were investigated by the acoustic emission (AE) technique in this paper. The AE energy, amplitude, and the peak frequency were analyzed. At the same time, combining with the load-displacement curve varying feature, the compressive fracture processes were divided into different stages to deeply understand the damaged mechanisms of the composites. Results reveal that the behavior of AE parameters described well the fracture process of the composites.


2016 ◽  
Vol 46 (7) ◽  
pp. 1511-1535 ◽  
Author(s):  
Md. Hasan Ikbal ◽  
Azzam Ahmed ◽  
Wang Qingtao ◽  
Zeng Shuai ◽  
Li Wei

Finite element analysis and experimental studies are presented on in-plane tensile and compressive properties under quasi-static loading for two types of hybrid composites made by using unidirectional T620S carbon and E-glass fabrics in a common matrix, epoxy resin. Results are also generated for plain T620S carbon/epoxy and plain E-glass/epoxy composite laminates. Quantitative data for tensile and compressive properties are presented. It is observed that for hybrid composites, placing carbon and glass fiber parts alternately in every layer (intralayer configuration) gives higher tensile and compressive strengths. Tensile failure strain is higher for intralayer compared to interlayer hybrid configuration.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Norhafiza Muhammad ◽  
Aidah Jumahat ◽  
Nor Merlisa Ali

The growing use of high-performance materials, which are made of hybrid composite systems, has increased rapidly in engineering applications. Hybridization of woven carbon, glass and Kevlar fibre offers better mechanical properties of composite materials. This is also an effective way to reduce the cost of advanced composites. At the moment information on compressive properties of hybrid composites is very limited. It is well known that the compressive strength of composite materials is lower than the tensile strength. Therefore, compressive strength becomes one of the most important criteria in designing composite structures. Therefore, this research is aimed to evaluate the compressive properties of hybrid composites and compare to the properties of neat systems. Hybrid composite samples were fabricated using a vacuum bagging system. The compressive properties of Kevlar hybrid with carbon and glass composites were studied using an INSTRON 3382 universal machine with a constant crosshead speed of 1 mm/min. The compressive properties were determined based on the stress-strain diagram. It was observed that for hybrid composites, placing carbon woven cloth layers in the exterior and Kevlar woven cloth in the interior showed higher compressive strength than placing glass woven cloth layers in the exterior and Kevlar woven cloth in the interior. The modes of failure of the hybrid composite laminates were observed and evaluated using optical microscope and scanning electron microscopy (SEM).


2021 ◽  
Vol 258 ◽  
pp. 113423
Author(s):  
Zhao Junqing ◽  
Zhou Hongjian ◽  
Sun Xinyang ◽  
Jing Yuhang

2013 ◽  
Vol 652-654 ◽  
pp. 29-32
Author(s):  
A Ying Zhang ◽  
Dong Xing Zhang

The effects of voids on the tensile and compressive properties of CFRP laminates were discussed in this paper. The tensile and compressive strength of specimens decreased with the porosity increasing from 0.33% to 1.50%. The empirical models of the tensile strength and the compressive strength of CFRP laminates with different porosities are established by using ORIGIN software. The evolution laws of the tensile strength and the compressive strength with different porosities were corresponding to the form of exponential function.


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


Sign in / Sign up

Export Citation Format

Share Document