scholarly journals A multipathogen selective enrichment broth for simultaneous growth of Salmonella spp., Vibrio parahaemolyticus, and Vibrio cholerae

2010 ◽  
Vol 56 (6) ◽  
pp. 465-474 ◽  
Author(s):  
Xing-Long Xiao ◽  
Yi-Juan Li ◽  
Yi-Ying Qin ◽  
Yi-Gang Yu ◽  
Hui Wu
2008 ◽  
Vol 74 (15) ◽  
pp. 4853-4866 ◽  
Author(s):  
Hyochin Kim ◽  
Arun K. Bhunia

ABSTRACT Multipathogen detection on a single-assay platform not only reduces the cost for testing but also provides data on the presence of pathogens in a single experiment. To achieve this detection, a multipathogen selective enrichment medium is essential to allow the concurrent growth of pathogens. SEL broth was formulated to allow the simultaneous growth of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The results were compared to those obtained with the respective individual selective enrichment broths, Rappaport-Vassiliadis (RV) for S. enterica, modified E. coli broth with 20 mg of novobiocin/liter for E. coli O157:H7, and Fraser broth for L. monocytogenes, and a currently used universal preenrichment broth (UPB). The growth of each pathogen in SEL inoculated at 101 or 103 CFU/ml was superior to that in the respective individual enrichment broth, except in the case of RV, in which Salmonella cells inoculated at both concentrations grew equally well. In mixed-culture experiments with cells of the three species present in equal concentrations or at a 1:10:1,000 ratio, the overall growth was proportional to the initial inoculation levels; however, the growth of L. monocytogenes was markedly suppressed when cells of this species were present at lower concentrations than those of the other two species. Further, SEL was able to resuscitate acid- and cold-stressed cells, and recovery was comparable to that in nonselective tryptic soy broth containing 6% yeast extract but superior to that in the respective individual selective broths. SEL promoted the growth of all three pathogens in a mixture in ready-to-eat salami and in turkey meat samples. Moreover, each pathogen was readily detected by a pathogen-specific immunochromatographic lateral-flow or multiplex PCR assay. Even though the growth of each pathogen in SEL was comparable to that in UPB, SEL inhibited greater numbers of nontarget organisms than did UPB. In summary, SEL was demonstrated to be a promising new multiplex selective enrichment broth for the detection of the three most prominent food-borne pathogens by antibody- or nucleic acid-based methods.


2010 ◽  
Vol 56 (7) ◽  
pp. 585-597 ◽  
Author(s):  
Yi-Gang Yu ◽  
Hui Wu ◽  
Yuan-Yuan Liu ◽  
Su-Long Li ◽  
Xiao-Quan Yang ◽  
...  

A selective enrichment broth (SSL) was formulated to allow concurrent growth of 3 prominent food-borne pathogens: Salmonella enterica serovar Enteritidis, Staphylococcus aureus , and Listeria monocytogenes . Nalidixic acid, lithium chloride, and potassium tellurite were added as the selective agents, while sodium pyruvate and mannitol were employed as the supplemented elements. In the individual growth trial, the target pathogens were capable of growing in SSL to as high as 7–8 log10colony-forming units (CFU)/mL after 24 h incubation at 37 °C when being inoculated at 50–100 CFU/mL. In the simultaneous growth trial, the 3 combined target pathogens showed similar growth rates. The results show that SSL could support the successful simultaneous enrichment of 3 pathogens; however, SSL inhibited the growth of nontarget bacteria. In the artificial contaminated raw beef and ready-to-eat chicken, a high recovery of these 3 target pathogens was obtained in SSL. Finally, Salmonella Enteritidis, Staphylococcus aureus, and L. monocytogenes were detected from 710 suspicious food samples by SSL with real-time PCR, and no false-positive or -negative results were reported. In summary, SSL has been shown to be a suitable broth for the simultaneous detection of the 3 prominent food-borne pathogens by multipathogen detection on a single-assay platform.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Jiajia Wan ◽  
Zhaoxin Lu ◽  
Xiaomei Bie ◽  
Fengxia Lv ◽  
Haizhen Zhao

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 302 ◽  
Author(s):  
Somary Nhem ◽  
Joanne Letchford ◽  
Chea Meas ◽  
Sovanndeth Thann ◽  
James C. McLaughlin ◽  
...  

Melioidosis infection, caused by Burkholderia pseudomallei, is increasingly reported in Cambodia. We hypothesized that implementation of an enhanced sputum testing protocol in a provincial hospital diagnostic microbiology laboratory would increase detection of B. pseudomallei. We tested 241 sputum specimens that were deemed acceptable for culture, comparing culture in selective enrichment broth followed by sub-culture on Ashdown’s medium to standard culture methods. Two specimens (0.8%) were positive for B. pseudomallei using the enhanced protocol whereas one specimen (0.4%) was positive using standard methods. These findings demonstrate that B. pseudomallei is rarely detected in sputum at this hospital. The low frequency of B. pseudomallei in sputum specimens precludes drawing any conclusions about the relative benefits of an enhanced sputum testing protocol at this site. Promoting clinician awareness of the infection and encouraging utilization of diagnostic microbiology services are likely to be important factors in facilitating identification of melioidosis.


Sign in / Sign up

Export Citation Format

Share Document