scholarly journals Increased Lipolysis, Diminished Adipose Tissue Insulin Sensitivity, and Impaired β-Cell Function Relative to Adipose Tissue Insulin Sensitivity in Obese Youth With Impaired Glucose Tolerance

Diabetes ◽  
2017 ◽  
Vol 66 (12) ◽  
pp. 3085-3090 ◽  
Author(s):  
Joon Young Kim ◽  
Alexis Nasr ◽  
Hala Tfayli ◽  
Fida Bacha ◽  
Sara F. Michaliszyn ◽  
...  
2019 ◽  
Vol 21 (1) ◽  
pp. 18-27
Author(s):  
Joon Young Kim ◽  
Hala Tfayli ◽  
Fida Bacha ◽  
SoJung Lee ◽  
Sara F. Michaliszyn ◽  
...  

BMC Nutrition ◽  
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Al Thani ◽  
Eman Sadoun ◽  
Angeliki Sofroniou ◽  
Amin Jayyousi ◽  
Khaled Ahmed Mohamed Baagar ◽  
...  

Abstract Background Vitamin D deficiency is associated with indicators of pre-diabetes including, insulin resistance, β-cell dysfunction and elevated plasma glucose with controversial findings from current trials. This study aims to investigate the long-term effect of vitamin D on glucose metabolism and insulin sensitivity in pre-diabetic and highly vitamin-deficient subjects. Methods One hundred thirty-two participants were randomized to 30,000 IU vitamin D weekly for 6 months. Participants underwent oral glucose tolerance test (OGTT) at 3-month intervals to determine the change in plasma glucose concentration at 2 h after 75 g OGTT (2hPCG). Secondary measurements included glycated hemoglobin, fasting plasma glucose and insulin, post-prandial insulin, indices of insulin sensitivity (HOMA-IR, Matsuda Index), β-cell function (HOMA-β, glucose and insulin area under the curve (AUC), disposition and insulinogenic indices), and lipid profile. Results A total of 57 (vitamin D) and 75 (placebo) subjects completed the study. Mean baseline serum 25(OH) D levels were 17.0 ng/ml and 14.9 ng/ml for placebo and vitamin D group, respectively. No significant differences were observed for 2hPC glucose or insulin sensitivity indices between groups. HOMA-β significantly decreased in the vitamin D group, while area under curve for glucose and insulin showed a significant reduction in β-cell function in both groups. Additionally, HOMA-β was found to be significantly different between control and treatment group and significance persisted after adjusting for confounding factors. Conclusion Vitamin D supplementation in a pre-diabetic and severely vitamin-deficient population had no effect on glucose tolerance or insulin sensitivity. The observed reduction in β-cell function in both placebo and vitamin D groups could be attributed to factors other than supplementation. Trial registration NCT02098980, 28/03/2014 (www.clinicaltrials.gov).


2010 ◽  
Vol 89 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Kei Miyakoshi ◽  
Mamoru Tanaka ◽  
Yoshifumi Saisho ◽  
Akira Shimada ◽  
Kazuhiro Minegishi ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4281-4281
Author(s):  
Pacharapan Surapolchai ◽  
Suradej Hongeng ◽  
Samart Pakakasama ◽  
Pat Mahachoklertwattana ◽  
Angkana Winaichatsak ◽  
...  

Abstract Background: The purposes of the study were to determine β-cell function and insulin sensitivity after ALL therapy cessation and the association between genetic polymorphisms of β-cell differentiation genes, TCF7L2 and PAX4, with insulin resistance (β-cell dysfunction) in childhood ALL survivors. Methods: Childhood ALL patients diagnosed during 1997–2004 finished the treatment for at least 6 months. The oral glucose tolerance test and lipid screening were performed. Impaired glucose tolerance and diabetes mellitus (DM) were defined according to WHO criteria. β-cell function was estimated by homeostasis model assessment β-cell (HOMA β-cell) and insulinogenic index (IGI) and insulin sensitivity was estimated by whole body insulin sensitivity index (WBISI). The polymorphisms of TCF7L2 (rs12255372 and rs7903146) and PAX4 (A1186C) were genotyped and assessed for the association between these polymorphisms and the β-cell function and the insulin sensitivity. Results: 126 patients were studied (52 females, 74 males and age at the time of study; 4–20 yrs). 116 patients (92%) had normal glucose tolerance (NGT) while the others 10 patients (8%) had impaired glucose tolerance (IGT). Comparing between IGT and NGT groups respectively, we found statistically significant differences in age at the diagnosis (7.5 and 5.2 yrs, p=0.041), age at the study (14 and 10.3 yrs, p=0.001), the duration of post ALL therapy cessation (43 and 26 months, p=0.015), and insulin sensitivity index (WBISI) (5.75 and 9.52, p<0.001). HOMA β-cell and IGI were not different between NGT and IGT group (190.8 and 139.5, p=0.332; 23.6 and 15.8, p=0.310, respectively). Moreover, 32 of 126 patients (25%) had insulin resistance (modified from the criteria of WBISI in obese children and adolescents). These 32 patients who had insulin resistance demonstrated significant pictures of metabolic syndrome i.e. hypertriglyceridemia (116.6 and 85.4 mg/dL, p=0.036), low HDL-C (43.0 and 48.3 mg/dL, p=0.015), obesity (BMI SDS 1.03 and 0.38, p=0.044) and were also older age at the study (12.8 and 9.9 yrs, p<0.001). The genotype frequencies and allele frequencies of polymorphisms of TCF7L2 and PAX4 genes between IGT and NGT groups and between insulin resistance and nonresistance were not difference (p>0.05). Conclusion: The childhood ALL survivors who had IGT were associated with the longer duration of ALL therapy cessation, the older age at diagnosis and at the time of study, and insulin resistance while β-cell function was still relatively preserved. Long-term childhood ALL survivors have potential risks of IGT, insulin resistance and metabolic syndrome. Our findings with such small representatives are not yet applicable to associate TCF7L2 and PAX4 polymorphisms with the insulin resistance (β-cell dysfunction) in the childhood ALL survivors.


2007 ◽  
Vol 292 (6) ◽  
pp. E1575-E1580 ◽  
Author(s):  
Shinji Sakaue ◽  
Shinji Ishimaru ◽  
Daisuke Ikeda ◽  
Yoshinori Ohtsuka ◽  
Toshiro Honda ◽  
...  

Although a hyperbolic relationship between insulin secretion and insulin sensitivity has been shown, the relationship has been often questioned. We examined the relationship using oral glucose tolerance test (OGTT)-derived indexes. A total of 374 Japanese subjects who had never been given a diagnosis of diabetes underwent a 75-g OGTT. In subjects with normal glucose tolerance (NGT), the ln [insulinogenic index (IGI)] was described by a linear function of ln ( x) ( x, insulin sensitivity index) in regression analysis when the reciprocal of the insulin resistance index in homeostasis model assessment, Matsuda's index, and oral glucose insulin sensitivity index were used as x. Because the 95% confidence interval of the slope of the regression line did not necessarily include −1, the relationships between IGI and x were not always hyperbolic, but power functions IGI × xα = a constant. We thought that IGI × xα was an appropriate β-cell function estimate adjusted by insulin sensitivity and referred to it as β-cell function index (BI). When Matsuda's index was employed as x, the BI values were decreased in subjects without NGT. Log BI had a better correlation with fasting plasma glucose (PG; FPG) and 2-h PG in non-NGT subjects than in NGT subjects. In subjects with any glucose tolerance, log BI was linearly correlated with 1-h PG and glucose spike (the difference between maximum PG and FPG). In conclusion, the relationship between insulin secretion and insulin sensitivity was not always hyperbolic. The BI is a useful tool in the estimation of β-cell function with a mathematical basis.


Sign in / Sign up

Export Citation Format

Share Document