scholarly journals Relationship Between Glycosylated Hemoglobin Assessment and Glucose Therapy Intensification in Patients With Diabetes Hospitalized for Acute Myocardial Infarction

Diabetes Care ◽  
2012 ◽  
Vol 35 (5) ◽  
pp. 991-993 ◽  
Author(s):  
J. M. Stolker ◽  
J. A. Spertus ◽  
D. K. McGuire ◽  
M. Lind ◽  
F. Tang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Side Gao ◽  
Qingbo Liu ◽  
Hui Chen ◽  
Mengyue Yu ◽  
Hongwei Li

Abstract Background Acute hyperglycemia has been recognized as a robust predictor for occurrence of acute kidney injury (AKI) in nondiabetic patients with acute myocardial infarction (AMI), however, its discriminatory ability for AKI is unclear in diabetic patients after an AMI. Here, we investigated whether stress hyperglycemia ratio (SHR), a novel index with the combined evaluation of acute and chronic glycemic levels, may have a better predictive value of AKI as compared with admission glycemia alone in diabetic patients following AMI. Methods SHR was calculated with admission blood glucose (ABG) divided by the glycated hemoglobin-derived estimated average glucose. A total of 1215 diabetic patients with AMI were enrolled and divided according to SHR tertiles. Baseline characteristics and outcomes were compared. The primary endpoint was AKI and secondary endpoints included all-cause death and cardiogenic shock during hospitalization. The logistic regression analysis was performed to identify potential risk factors. Accuracy was defined with area under the curve (AUC) by a receiver-operating characteristic (ROC) curve analysis. Results In AMI patients with diabetes, the incidence of AKI (4.4%, 7.8%, 13.0%; p < 0.001), all-cause death (2.7%, 3.6%, 6.4%; p = 0.027) and cardiogenic shock (4.9%, 7.6%, 11.6%; p = 0.002) all increased with the rising tertile levels of SHR. After multivariate adjustment, elevated SHR was significantly associated with an increased risk of AKI (odds ratio 3.18, 95% confidence interval: 1.99–5.09, p < 0.001) while ABG was no longer a risk factor of AKI. The SHR was also strongly related to the AKI risk in subgroups of patients. At ROC analysis, SHR accurately predicted AKI in overall (AUC 0.64) and a risk model consisted of SHR, left ventricular ejection fraction, N-terminal B-type natriuretic peptide, and estimated glomerular filtration rate (eGFR) yielded a superior predictive value (AUC 0.83) for AKI. Conclusion The novel index SHR is a better predictor of AKI and in-hospital mortality and morbidity than admission glycemia in AMI patients with diabetes.


2020 ◽  
Author(s):  
Amankeldi Salybekov ◽  
Katsuaki Sakai ◽  
Makoto Natsumeda ◽  
Kosit Vorateera ◽  
Shuzo Kobayashi ◽  
...  

Abstract Acute myocardial infarction (AMI), with a very relevant global disease burden, remains the major mortality and morbidity cause among all cardiovascular diseases. Patient prognosis is strictly dependent on early diagnosis and the adoption of adequate interventions. AMI diagnosis requires constant optimization, particularly considering the individuals at higher risk (or more vulnerable to worse outcomes) such as patients with diabetes mellitus and atherosclerosis. Herein, we investigated the levels of peripheral blood EPCs and immune cell-subsets from myeloid and lymphoid lineages, as well as their temporal dynamics, in the quest for new prognostic biomarkers of AMI. We collected blood from 18 hospitalized patients (days 3 and 7 after AMI onset) and 16 healthy volunteers, and resolved their circulating PBMC populations via flow cytometry. Overall, our data demonstrate a significant decrease in peripheral EPCs and CD8+ T cells, three days following an AMI. EPCs appear to be functionally impaired in AMI patients, and their circulating numbers associate with cardiac vessel lesions. Furthermore, CD8+ T cells (and even M1-macrophages) in the periphery, in combination with the classical laboratory determinations, may serve as high accuracy biomarkers of AMI, potentially aiding to prevent worse AMI outcomes.


Sign in / Sign up

Export Citation Format

Share Document